next up previous
Next: Examples of Fractals Up: Theoretical Methods for Fractals Previous: Bifurcations

The logistic Function

Definition 1 (The logistic function)   The function $ f_{\lambda}:\mathbb {R}\to\mathbb {R}$ with $ f_{\lambda}(x)=\lambda x(1-x)$ is called the logistic function.

The logistic function is often used in relation with the fix-point iteration. For example the development of a population can be described by $ x_{n+1}=f_{\lambda}(x_n)$ (see also section 4.1).

For $ \lambda =3.2$ the logistic function is plotted in figure 1. As we can see for this parameter the logistic function has an stable two orbit attractor.

Figure 1: The logistic function $ f_{\lambda }$ for $ \lambda =3.2$
\begin{figure}
\centering \epsfig {file=Pics/logistic.eps,width=12cm,angle=0} \end{figure}

Theorem 1   The Fix-point of the logistic function $ f_{\lambda }$ is at $ x_1^*:=0$ and at $ x_2^*:=\frac{\lambda-1}{\lambda}$. The second fix-point $ x_2^*$ is stable for $ -2<\lambda<3$ and instable for $ \lambda>3$.

Proof. $ x^*$ is a fix-point if and only if

$\displaystyle f_{\lambda}(x^*)=x^* \quad \Leftrightarrow \quad
x^*(\lambda-\lambda x^*)=x^*
$

$\displaystyle \Updownarrow
$

$\displaystyle x^*(\lambda-1-\lambda x^*)=0
$

$\displaystyle \Updownarrow
$

$\displaystyle x^*\in\left\{0,\frac{\lambda-1}{\lambda}\right\}
$

We know that the fix-point is stable if $ \vert f_{\lambda}'(x_2^*)\vert<1$.

$\displaystyle f'(x)=\lambda-2\lambda x \quad \Rightarrow \quad
f'(x^*_2)=\lambda-2(\lambda-1)=2-\lambda
$

On the other hand the fix-point $ x^*_2$ is instable if $ \vert f_{\lambda}'(x^*_2)\vert>1$. $ \qedsymbol$

Theorem 2   The logistic function $ f_{\lambda }$ has an stable two orbit system if $ 3<\lambda<1+\sqrt{6}$ with the points

$\displaystyle x^*\in\left\{
\frac{1+\lambda+\sqrt{\lambda^2-2\lambda-3}}{2\lambda},
\frac{1+\lambda-\sqrt{\lambda^2-2\lambda-3}}{2\lambda}
\right\}
$

Proof. Obviously $ f_\lambda$ has an stable two orbit system if and only if $ f_\lambda \circ f_\lambda $ has there a stable fix-point. Therefor we have to examine $ f_\lambda \circ f_\lambda $.

$\displaystyle (f_\lambda\circ f_\lambda)(x)=f_\lambda(f_\lambda(x))=
\lambda^2 x (1-x)(\lambda x^2+\lambda x -1)
$

A fix-point of $ f_\lambda \circ f_\lambda $ is a value $ x^*\in\mathbb {R}$ which satisfies the equation $ f_\lambda(f_\lambda(x^*))=x^*$:

$\displaystyle x(-\lambda^3 x^3+2\lambda^3 x^2-(\lambda^3+\lambda^2)x+\lambda^2-1)=0
$

This is the case if and only if

$\displaystyle x^*\in\left\{0, \frac{\lambda-1}{\lambda},
\frac{1+\lambda+\sqrt{...
...3}}{2\lambda},
\frac{1+\lambda-\sqrt{\lambda^2-2\lambda-3}}{2\lambda}
\right\}
$

The first derivative of $ f_\lambda \circ f_\lambda $ in the last two points is exactly

$\displaystyle -\lambda^2+2\lambda+4
$

of which the absolute value is smaller than one for all $ \lambda\in (3,1+\sqrt{6})$ $ \qedsymbol$

The function $ f_\lambda \circ f_\lambda $ is represented for $ \lambda =3.2$ in figure 2.

Figure 2: The logistic function $ f_\lambda \circ f_\lambda $ for $ \lambda =3.2$
\begin{figure}
\centering \epsfig {file=Pics/logistic2.eps,width=12cm,angle=0} \end{figure}

For higher values $ \lambda>1+\sqrt 6$ you can show that the orbit splits into 8 points then into 16, 32, 64 etc points. The limes is reached at about $ \lambda\approx 3.570$. The orbit for this limes is a Cantor set.


next up previous
Next: Examples of Fractals Up: Theoretical Methods for Fractals Previous: Bifurcations
Tino Kluge
2000-12-05