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Abstract

The deregulation of regional electricity markets has led to more competitive

prices but also higher uncertainty in the future electricity price development.

Most markets exhibit high volatilities and occasional distinctive price spikes,

which results in demand for derivative products which protect the holder against

high prices.

A good understanding of the stochastic price dynamics is required for the pur-

poses of risk management and pricing derivatives. In this thesis we examine a

simple spot price model which is the exponential of the sum of an Ornstein-

Uhlenbeck and an independent pure jump process. We derive the moment

generating function as well as various approximations to the probability den-

sity function of the logarithm of this spot price process at maturity T . With

some restrictions on the set of possible martingale measures we show that the

risk neutral dynamics remains within the class of considered models and hence

we are able to calibrate the model to the observed forward curve and present

semi-analytic formulas for premia of path-independent options as well as ap-

proximations to call and put options on forward contracts with and without

a delivery period. In order to price path-dependent options with multiple ex-

ercise rights like swing contracts a grid method is utilised which in turn uses

approximations to the conditional density of the spot process.

Further contributions of this thesis include a short discussion of interpolation

methods to generate a continuous forward curve based on the forward contracts

with delivery periods observed in the market, and an investigation into optimal

martingale measures in incomplete markets. In particular we present known

results of q-optimal martingale measures in the setting of a stochastic volatility

model and give a first indication of how to determine the q-optimal measure

for q = 0 in an exponential Ornstein-Uhlenbeck model consistent with a given

forward curve.
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Chapter 1

Introduction

Historically, electricity prices were generally determined by regulatory authorities controlled

by the government of each individual country. Prices were intended to reflect the (marginal)

cost of production and did not change very often and even then quite predictably. In the

early 1990s, a few countries started to liberalise their electricity markets by leaving the price

determination to the market principles of supply and demand. Many countries have since

reformed their power sector. One important consequence is the trade of electricity delivery

contracts on exchanges, similar to the trade of shares on a stock exchange, for example.

The new freedom achieved has brought the drawback of increased uncertainty about the

price development and indeed, many markets exhibit very high rates of volatility. Although

households do not buy electricity directly from an exchange, many companies with high

power consumption do. This creates demand for contracts which protect them against high

prices but give the optionality to profit from low prices. Such contracts are called options

or derivatives.

For pricing derivative contracts and managing risk, there is now a very comprehensive

theory for financial markets which can be utilised. However there are distinct differences

between financial and electricity markets which require further investigations. Although

the general arbitrage pricing theory can be applied, it is vital to utilise an appropriate

stochastic model for the underlying price dynamics. In the literature, two main approaches

are considered: the modelling of the spot price dynamics and the entire forward curve,

respectively. Forward curve models are very well suited for pricing options on forwards but,

as they normally imply a very complex non-Markovian dynamics for the spot price, it is

hard to value path dependent options. As one of our main aims is to be able to price swing

options – a complex path dependent option giving the holder the opportunity to exercise a

certain right repeatedly over a period of time – we exclusively focus on spot price models.

1



CHAPTER 1. INTRODUCTION 2

In this thesis we propose and examine in detail a simple mean-reverting process exhibiting

price spikes. A distinct feature of electricity markets is the formation of price spikes and

are caused by events where the maximum supply is approached by current demand. The

occurrence of spikes has far reaching consequences for risk management and pricing purposes

which is why we believe it is vital to model this feature appropriately. We do not claim that

our proposed model perfectly fits the market but rather recommend it because it reflects

some main properties and is analytically tractable.

This thesis is organised as follows: An introduction into electricity markets is given in

Chapter 2 which contains a technical description of the NordPool electricity exchange. In

addition we propose an interpolation algorithm that will enable us to create a continuous

forward curve based on the few forward contracts observed in the market.

We propose a stochastic spot price model in Chapter 3 and examine its properties in detail.

In particular the moment generating function of the spot price is given and approximations

to the density function are derived which are later used as the basis for a numerical algorithm

to price swing options in Chapter 4.

We begin Chapter 4 with a short introduction into utility indifference pricing, we then focus

on arbitrage pricing and derive the risk neutral dynamics of the model under a slightly

restricted set of equivalent martingale measures and show there is a subset consistent with

observed forward prices, i.e. the model can be calibrated to any smooth forward curve.

After stating the well known result of pricing path-independent options based the moment

generating function we derive approximations to prices of options on forwards with and

without a delivery period. This is followed by a section on pricing swing options.

Due to the incompleteness of the electricity market we devote Chapter 5 to an introduction

to the choice of optimal martingale measures. We make a short excursion into the setting

of a stochastic volatility model in equity markets as theory there is developed further. Our

first attempts on finding q-optimal measures in the setting of electricity markets in a special

case concludes the chapter.

Chapter 6 proposes model extensions and concludes.



Chapter 2

Electricity markets

The aim of this chapter is to introduce peculiarities of electricity markets. After a discussion

of the basic differences between electricity as a commodity and share markets, a detailed

description of the electricity spot and derivative markets is given in the subsequent sections.

Particular attention is given to the question of how to generate a continuous forward curve

based on the few forward contracts observed in the market.

Due to the profound differences between electricity and other financial markets like share

markets, classical financial theories cannot be directly applied in electricity markets but

modifications and adaptations have to be made. Nevertheless, the absence of arbitrage re-

mains the fundamental principle on which we base the pricing of derivatives. The differences

and similarities of the two markets are described below.

Underlying unit: Where in share markets the underlying unit is simply one specific share

of a company, in the electricity market it is a specific unit of energy (usually 1 MWh).

In an abstract sense and leaving aside the technological restrictions, one could imagine

the energy units to be stored in very small objects which lie in a big storehouse.

Buying these units as a financial commodity would only involve an electronic money

transaction and an assignment of the bought energy units into the buyers portfolio

without actual physical delivery. So far, everything sounds identical to share markets.

Production and consumption: In share markets the number of shares basically remain

the same over time (unless the company issues new shares) and give the owner codeter-

mination rights. Electrical energy can be produced and consumed and even with the

hypothetical ability to store, that has a profound effect on the price per unit. Based on

microeconomic considerations, one would expect in the long term the price to revert

to the production cost. This is the reason why in commodity markets mean-reverting

models are mainly used.

3



CHAPTER 2. ELECTRICITY MARKETS 4

Inability to store: In reality, current technology does not allow electrical energy to be

stored efficiently. It is virtually impossible to store the amount of electrical energy

a big factory consumes on a single day, let alone the energy of an entire country.

Electrical energy is therefore considered to be non-storable as far as the power market

is concerned. This has far-reaching consequences.

• Electricity can be described as a pure flow variable (energy per time, measured in

MW) and it requires time to transfer a certain amount of energy. In particular,

derivative contracts will always specify a delivery period. Also, limitations in the

transmission grid can cause congestion.

• Production and consumption have to be in balance all the time. A small imbal-

ance can be absorbed in voltage changes and, for supply excess, dissipation in

the grid and generating plants. The supply dropping below the demand could

result in a black-out. This real-time balance of demand and supply introduces

seasonality of the underlying price as the demand changes over the day, week

and year. In addition, inelasticity of demand and supply1 make electricity prices

very sensitive to extreme events like power plant outages. In such an event,

the maximum supply could drop to levels near the current demand causing the

price to rise considerably. After a short time, however, the power outage could

be resolved or spare power stations be activated, normalising the situation and

bringing the price down to previous levels. Such price events are called spikes.

• Hedging derivative contracts with the underlying requires the ability to store and

therefore cannot be done for electricity derivatives. Hence this market is auto-

matically incomplete, independent of the stochastic process used to model the

underlying. In simple terms, the risk neutral probability measure Q is not unique

but can be determined based on market observations of derivative products like

forwards.

Having introduced the main theoretical properties of electricity markets, a more detailed

and technically oriented description follows.

1End-users usually receive electricity for a fixed price and would not reduce their consumption if power
prices went up on the exchange and power stations need a certain warm-up time until they are ready to
produce electricity.
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2.1 The spot market

Due to technical limitations in electricity transmission,2 markets are localised to specific

regions, like individual countries. Each market has their own rules. The following descrip-

tions are based on the specifications of the NordPool market (The Nordic Power Exchange),

owing to its long history. Founded in Norway in 1991, NordPool was the world’s first in-

ternational power exchange. Later on, the countries Sweden (1996), Finland (1998) and

Denmark (2000) joined this market, resulting in a total generation of almost 400 TWh per

year3 serving a total population of about 24 million.

The liberalisation of a power market does not necessarily require the establishment of a

power exchange; however, it makes market information more transparent, and improves

competition and liquidity. The NordPool spot market (Elspot) operates in direct competi-

tion with non-exchange-market trading and had a market share of about 32% in 2002.

In addition to the power generation, the electricity needs to be transfered to its destination

through a transmission grid which is operated by transmission system operating companies

(TSO). This part of the market is monopolistic and tariffs are set by regulators. Prices

should reflect the maintenance cost and the energy loss, as it is the responsibility of the

TSOs to buy the energy lost through transmission from the spot market. It is therefore

guaranteed that the seller submits and the buyer receives the exact amount of energy as

specified in the spot market contracts. As a consequence, the total power procurement cost

consists of the spot price, trading fees, transmission charges and eventual imbalance costs

based on the real-time market, as will be described below. Despite this complex structure,

theory only takes spot prices into account as derivative products are solely based on them.

2.1.1 Spot price determination

Electricity prices per MWh are determined using a bidding system. Everybody with access

to the transmission grid and who meets the requirements4 set by NordPool can submit

bids, which are essentially functions saying how much energy would be bought or sold

depending on the price. In simple terms,5 the price is then given by the intersection of

the aggregate demand and supply curve. Based on this price it is clear how many units of

energy each participant sells or buys. To allow for the generators to prepare for delivery,

2Energy gets wasted over long distances due to the inner resistance of the wires.
3About 387 TWh was generated in 2001 which is on average about 44000 MW or 1.84 kW per capita.

The trade through the spot market was about 115 TWh and the rest were over the counter trades.
4E.g. a security amount in a pledged bank account is needed. The amount depends on the trading activity

but is at least NOK 100000.
5In reality the price will also be modified if congestion in the grid system is anticipated.
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Figure 2.1: Marginal cost merit order chart based on [Noller, 2002].

prices are determined on a day-ahead basis for each individual hour. The average price over

the entire day is called the base load price, the average over the most demanding hours

(depending on the regional market and day of week) is called peak price and the average

over the remaining hours is called off-peak price. Further adjustments to the demand or

supply of each participant can be made in the balancing market called Elbas (one hour-

ahead) and in the real-time market where prices are set in a way to penalise reduction

of supply or increase of demand and to discourage speculation in these markets. As long

as the adjustments are within a tolerance level, producers can immediately meet a change

of demand. However, stronger adjustments could cause the TSOs to switch off certain

consumers to be able to meet demand. The likelihood of such events is supposed to be

extremely small. However, events in the past have shown that those blackouts can occur.

Finally, the current consumption level is metered and differences to the contractual volume

are priced at the real-time market.

Bidding strategies of each participant could be quite complex but one would expect the

producers not to bid below their marginal cost of production. Based on this idea and

additional assumption on the behaviour of consumers one could use a supply-demand driven

model to describe the spot price process. A simplified model is given in [Barlow, 2002]

where the demand is assumed to be a stochastic process and independent of the price and

the supply an increasing function of the price. The price is then given by that value which

matches demand and supply. Figure 2.1 shows the approximate marginal cost of production

of the power stations in Germany and could be used as a basis of a more realistic supply-

demand model.
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Figure 2.2: Daily average prices at NordPool over a ten-year period. The first two small
arrows indicate the time region shown in Figure 2.3 and the second two indicate that of
Figure 2.4.

2.1.2 Spot market data

Figure 2.2 shows a ten-year history of the NordPool spot market. Unlike in stock markets,

prices appear to revert to a mean level and do not seem to behave like exponential Brownian

motion. In addition, a pattern of seasonality is clearly visible. Prices generally tend to be

higher in winter than in summer which is certainly caused by a higher demand in winter

due to the cold climate. An exception is the year 1996 where the price did not go down

during summer. In the Scandinavian countries, more than half of the energy generation

comes from hydro power plants. In order to satisfy the increased demand during winter

months, water from hydro reservoirs is used to generate more electricity. This makes the

market sensitive to the rainfall during summer months or the amount of snow-melt during

winter months. In addition, as is the case in any power market, the weather also influences

the demand side. This might explain part of the deviations from the seasonality patterns.

The years 1998, 1999 and 2000 show a particularly similar yearly seasonality pattern.

Analysing the finer structure of the price series reveals further seasonalities which are shown

in Figure 2.3. The first graph shows a weekly seasonality with low prices during weekends

and the second one shows intraday data with hourly resolution. A reduction of prices

overnight is obvious. It also needs to be remarked that the deviations from the daily

average price (base load) are very low compared to other markets like the UKPX (UK) and

the EEX (Germany).

Another peculiar property of the market data is the occurrence of spikes. There are several

apparent spikes in Figure 2.2. It is remarkable how fast prices revert to the previous level
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Figure 2.4: Electricity prices in the Nordic, German and UK market. The spike in the
German market goes up to EUR 240 per MWh.

after an upward jump occurred. A closer analysis also reveals downward jumps. The fine-

structure of a spike is shown in the third graph of Figure 2.3. The spike suddenly occurred

on the 24th of January with a daily average of almost NOK 400 per MWh after about NOK

130 the day before. The price went down on the following day and was back to normal

on the day after. The intraday movement is extremely volatile with levels of up to almost

NOK 1800 per MWh during high demand hours. Over night, when demand is at a low level,

prices revert to nearly normal levels. If a spike is caused by a power plant outage, such

a behaviour can be explained by a supply-demand model and keeping in mind the shape

of the marginal cost of production graph. Assuming constant high demand, a removal of

a part of the supply stack would result in a significant increase of the price whereas the

increase would be relatively low if the current demand was at a low level.

As electricity markets are poorly interconnected, regional markets can be very different.



CHAPTER 2. ELECTRICITY MARKETS 10

Three different markets are plotted in Figure 2.4, the NordPool, the EEX (Germany) and the

UKPX (UK). Whereas weekly seasonality is pronounced in all three markets, the volatility,

the speed of mean-reversion and the size and occurrence of spikes are different.

2.2 The forward and future market

As mentioned before, the inability to store electricity makes it a pure flow variable and

hence all derivative contracts need to specify a delivery period. Daily averages, i.e. base

load contracts, are usually the underlying products. Other averages like peak, off-peak6 and

block contracts can also be the underlying spot price. The most liquidly traded derivatives

are futures and forward contracts which can be bought over the counter (OTC) or from the

exchange. They specify the time to maturity, the duration of delivery and the futures or

forward price.7 Due to the many possible combinations of maturity and duration, only a

few of these are listed on exchanges. At NordPool, for instance, only futures with delivery

durations of one day, one week and four weeks, with time to maturities of usually less than

ten times the delivery period, are traded. In addition, season and year forwards are listed

where the delivery periods are specified as follows: January to April (Winter 1), May to

September (Summer), October to December (Winter 2) and January to December (Year).

Derivative contracts can be physically or financially settled. Assuming financial settlement,

as it is generally the case at NordPool, a holder of a forward base load contract would

receive or pay the difference between the spot price and the forward price on every day

during the delivery period. If electricity is required then it can be purchased on the spot

market. Given a constant consumption of electricity, they would pay on average the base

load price and receive or pay the difference to the forward price so that the net cost would

be equal to the forward price times the delivery period. All futures and forward contracts

traded on 1 August 2000 and 1 June 2001 are shown in Figure 2.5 where prices appear to

reflect expected seasonality.

Due to the inability to store electricity efficiently it is impossible to hedge futures and

forward contracts and hence they cannot be priced based on arbitrage arguments. On the

other hand, it does not mean that participants selling forward contracts face non-hedgeable

risks. Since power generators do not have to buy energy from the spot market but can

produce it to a known price, their risk is even reduced by selling a forward contract because

their cost and income is then totally determined.8

6The definition of peak and off-peak depends on the market. For example the EEX defines it as the
average price over 8:00-20:00 and the UKPX as the average over 7:00-19:00.

7Under a forward price one understands the strike price of a zero cost forward contract.
8Ignoring uncertainty in fuel costs and counterparty risk.
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2.2.1 Forwards with and without a delivery period

In order to relate forwards paying out at one point in time to forwards paying over a

time period we need to make some definitions. Without going into too much detail we

use standard notation (St and Ft are the spot price and information available at time t,

respectively and Q is the risk neutral measure assumed by the market) and simply make

the following definition which is backed by arbitrage arguments.

Definition 2.2.1 (Forward)

The strike price K at time t of a zero-cost forward contract paying ST −K at time T will

be denoted by F
[T ]
t and given by the risk neutral expectation

F
[T ]
t = EQ[ST |Ft].

If the forward contract does not just pay at time T but pays over a time period [T1, T2]

the strike of a zero-cost forward depends on the precise specification of when the money

is paid. In the Nordpool market the forward pays (St − K)∆t at time t but alternative

contracts, either over the counter or in other regional markets, might specify the payment

of the whole amount at the end of the delivery period T2. This is called instant settlement

and settlement at maturity, respectively.
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By definition of a forward contract, the strike K has to be set so that the contract is of zero

cost at the time t we enter into it, so for settlement at maturity we have

EQ

[∫ T2

T1

(ST −K) dT |Ft

]

= 0.

If K satisfies this equation we find

K =
1

T2 − T1

∫ T2

T1

EQ[ST |Ft] dT.

In the case of instant settlement the money received can be invested in a risk-less bank

account and so

EQ

[∫ T2

T1

(ST −K) er(T2−T ) dT |Ft

]

= 0,

which leads to

K =
r

er(T2−T1) −1

∫ T2

T1

er(T2−T ) EQ[ST |Ft] dT.

The following definition takes both cases into account.

Definition 2.2.2 (Forward with delivery)

We denote the strike price of a zero-cost forward contract with a delivery period [T1, T2] at

time t by F
[T1,T2]
t and define it to be the weighted average of all instantaneous forwards in

that period, i.e.

F
[T1,T2]
t =

∫ T2

T1

w(T ;T1, T2)F
[T ]
t dT, (2.1)

where w > 0 and
∫ T2

T1

w(T ;T1, T2) dT = 1.

Note, for settlement at maturity the factor w is given by w(T ) := 1
T2−T1

and for instant

settlement we have w(T ) := r er(T2−T )

er(T2−T1) −1
= r e−rT

e−rT1 − e−rT2
. For small delivery periods we can

make the first order approximation

r er(T2−T )

er(T2−T1) −1
≈ 1

T2 − T1
,

and so it only makes a small difference whether the money is settled at the end or on a

daily basis.

2.2.2 Building a continuous forward curve

No market provides forward prices for any arbitrary period [T1, T2]. The NordPool market,

for example, lists prices for around 30 (partly overlapping) periods of which a sample is
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shown in Figure 2.5. On a typical day these listed prices could consist of 5 daily,9 5 weekly,

10 monthly, 7 seasonal and 3 yearly contracts. For the purpose of pricing options or even

forwards which are not listed, it is desirable to derive instantaneous forward prices F
[T ]
t for

every maturity T . This is an inverse problem which does not have a unique solution, because

we look for a continuous function which satisfies a finite number of integral conditions (2.1).

[Fleten and Lemming, 2003] use a bottom up model (Multiarea Power Scheduling (MPS)

model) to make a first prediction of the forward curve. A quadratic optimisation method

is then used to minimise squared errors of the proposed forward curve and the results of

the MPS model subject to constraints imposed by the observed forward bid and ask prices.

A second term in the objective function assures low oscillations. In the setting of interest

rates [Hagan and West, 2005] give a survey of a wide range of interpolation methods.

In the following subsections we discuss various simple interpolation methods and their

limitations and finally suggest a method which uses seasonality information of the spot

price history and some form of spline interpolation to satisfy all the integral conditions.

To simplify the notation we assume t = 0 in this subsection, i.e. we seek to find an interpo-

lation F
[T ]
0 to the discrete forward contracts F

[Ti,T̂i]
0 given at time 0.

2.2.2.1 Approximation by a set of basis functions

Assuming prices for the periods [T1, T̂1], [T2, T̂2], . . . , [Tn, T̂n], T1 ≤ Ti and T̂i ≤ T̂n are

given where periods are allowed to overlap. Given a set of basis functions gi : [T1, T̂n] → R,

i ∈ {1, . . . , k}, the function f : [T1, T̂n] → R approximating the forward curve can be defined

as a linear combination

f(T ) :=
k
∑

i=1

aigi(T ).

According to Equation (2.1) the integral conditions are

∫ T̂i

Ti

w(s;Ti, T̂i)f(s) ds = F
[Ti,T̂i]
0 ,

and so
k
∑

j=1

aj

∫ T̂i

Ti

w(s;Ti, T̂i)gj(s) ds = F
[Ti,T̂i]
0 .

With Gi,j(s) :=
∫

w(s;Ti, T̂i)gj(s) ds and vi := F
[Ti,T̂i]
0 we get the following system of

equations:
k
∑

j=1

(

Gi,j(T̂i) −Gi,j(Ti)
)

aj = vi, i ∈ {1, . . . , n} .

9Daily, weekly, etc. indicates the duration T2 − T1 of delivery.
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Gi,j(T ) w = 1
T̂i−Ti

w = r e−rT

e−rTi − e−rT̂i

gj(T ) = sin(cjT ) −1
cj(T̂i−Ti)

cos(cjT ) r e−rT

(e−rTi − e−rT̂i)(r2+c2i )
(−r sin(cjT ) − cj cos(cjT ))

gj(T ) = cos(cjT ) 1
cj(T̂i−Ti)

sin(cjT ) r e−rT

(e−rTi − e−rT̂i)(r2+c2i )
(−r cos(cjT ) + cj sin(cjT ))

gj(T ) = T T 2

2(T̂i−Ti)
r e−rT

e−rTi − e−rT̂i
(−T

r − 1
r2

)

gj(T ) = T 2 T 3

3(T̂i−Ti)
r e−rT

e−rTi − e−rT̂i
(−T 2

r − 2T
r2

− 2
r3

)

Table 2.1: Values of Gi,j(T ) given the choice of gj and w.

For some choices of basis functions the integral values Gi,j(T ) are given in Table 2.1. If one

chooses to use fewer basis function than (non-redundant) integral constraints the equation

system will not be solvable in general. In this case, one could still minimise the squared

errors
n
∑

i=1



vi −
k
∑

j=1

(

Gi,j(T̂i) −Gi,j(Ti)
)

aj





2

→ min,

using a least square algorithm. A result of such an approximation is shown in Figure 2.6

where only a small number of sine and cosine basis functions have been used and therefore

the approximation is not expected to be very good. Given there are 29 non-redundant

contracts in this example (6 daily, 6 weekly, 10 monthly, 6 seasonal and 1 yearly forwards)

it would require sine and cosine function of about 15 different frequencies to fulfil all integral

conditions, the result of which would be highly oscillating. Another disadvantage of this

method is its sensitivity to the first few short term contracts. The volatility of short term

forwards close to maturity is much higher than contracts far away from maturity.10 A

method which results in function values F
[T ]
0 , T � 0, being sensitive to given prices F

[Ti,T̂i]
0

for T̂i close to 0 results in too high volatilities for long term forwards which is not desirable.

2.2.2.2 Approximation by a piecewise quadratic polynomial

Another approach is to use piecewise polynomial functions (splines) and request continuity

of function values and derivatives as appropriate. We assume non-overlapping contracts

without any gaps, i.e. 0 < T1 < T2 < · · · < Tn+1 and F
[Ti,Ti+1]
0 , i ∈ {1, . . . , n}. Fur-

thermore we assume for the moment w(T ;Ti, Ti+1) = 1
Ti+1−Ti

. The interpolating function

f : [T1, Tn+1] → R is now given by piecewise quadratic functions fi : [Ti, Ti+1] → R as

follows

f(t) = fi(t), ∀t ∈ [Ti, Ti+1).

10This is due to the mean-reverting nature of the underlying and the inability to hedge with it.
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Figure 2.6: Approximation of the forward curve by a continuous curve. Both curves are
linear combinations of sine and cosine functions, where the red one uses two periodicities
(yearly and half yearly) and the blue one uses three. Due to the few parameters and the
many integral constraints this interpolation is not expected to fit very well.

It turns out to be favourable to represent fi as

fi(t) = gi

(

t− Ti
Ti+1 − Ti

)

, t ∈ [Ti, Ti+1], gi(t) := ait
2 + bit+ ci, t ∈ [0, 1],

and so we get

∫ Ti+1

Ti

fi(t)

Ti+1 − Ti
dt =

∫ 1

0
gi(s) ds =

ai
3

+
bi
2

+ ci,

fi(Ti) = gi(0) = ci,

fi(Ti+1) = gi(1) = ai + bi + ci,

f ′i(Ti) =
g′i(0)

Ti+1 − Ti
=

bi
∆Ti

,

f ′i(Ti+1) =
g′i(1)

Ti+1 − Ti
=

2ai + bi
∆Ti

.

Hence, the conditions to be satisfied by gi are

ai
3

+
bi
2

+ ci = vi (integral condition),

ai + bi + ci = ci+1 (continuity),

2ai + bi
∆Ti

=
bi+1

∆Ti+1
(smoothness),
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which gives us 3n−2 equations and 3n unknowns. Two more conditions need to be imposed

to obtain a unique solution. First we rearrange the equations in order to reduce the compu-

tational effort to solve the equation system. Using the integral and smoothness condition

to eliminate ai and bi from the continuity condition leads to

ci = vi −
ai
3

− bi
2
, i ∈ {1, . . . , n} (integral),

ai =
1

2

(

∆Ti
∆Ti+1

bi+1 − bi

)

, i ∈ {1, . . . , n− 1} (smoothness),

bi−1 + 2

(

∆Ti−1

∆Ti
+ 1

)

bi +
∆Ti

∆Ti+1
bi+1 = 6(vi − vi−1), i ∈ {2, . . . , n− 1} (continuity).

The third equation is a tridiagonal equation system in b and can be solved in O(n) steps.

With the knowledge of the values b1, . . . , bn results for ai and ci can be obtained using the

second and first equation, respectively.

As mentioned before, there is no unique solution to the equation system which leaves us

with the choice of imposing two more boundary conditions. For example, one could chose

to define the slope of the function on the left and right hand side. Say, d1 and d2 are given

values of the derivative at T1 and Tn+1, respectively, the following two conditions need to

be satisfied:
b1

∆T1
= d1,

2an + bn
∆Tn

=
bn+1

∆Tn+1
= d2.

For the right derivative we have introduced an additional but imaginary segment with the

index n+ 1 which only makes the equations more elegant because then we get

an =
1

2
(∆Tnd2 − bn) ,

b1 = d1∆T1,

bn−1 + 2

(

∆Tn−1

∆Tn
+ 1

)

bn = −∆Tnd2 + 6(vn − vn−1),

which completes the equation system. A result of the procedure can be seen in Figure 2.7.

The advantage of this interpolation method is that it produces a smooth function which

satisfies precisely all integral conditions and hence does not introduce arbitrage. However,

it will not show a seasonality pattern over a segment which only contains the information

of a yearly contract.

Note, by applying cubic spline interpolation to the primitive of f we obtain the same

interpolation as above. Define G(t) :=
∫ t
T1
f(x) dx and using the same notation vi :=

F
[Ti,Ti+1]
0 , the integral conditions become

G(T1) = 0, G(Ti+1) −G(Ti) = vi,
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Figure 2.7: Interpolation of the forward curve by a piecewise quadratic polynomial.

which we can rewrite to obtain a point-interpolation formulation for G

G(T1) = 0, G(T2) = v1, . . . , G(Ti) =
i−1
∑

j=1

vj .

Applying standard cubic spline interpolation and differentiating G results in a piecewise

quadratic polynomial satisfying the same continuity and smoothness conditions as above.

2.2.2.3 Approximation by a piecewise quadratic polynomial: the general case

We now go to the general case and allow any weighting function w. The derivation of the

method remains the same but only the integral condition changes:

∫ Ti+1

Ti

w(t;Ti, Ti+1)fi(t) dt =

∫ 1

0
w
(

Ti + (Ti+1 − Ti)s;Ti, Ti+1

)

(Ti+1 − Ti)gi(s) ds

= αiai + βibi + ci,

with

αi :=

∫ 1

0
w
(

Ti + (Ti+1 − Ti)s;Ti, Ti+1

)

(Ti+1 − Ti)s
2 ds,

βi :=

∫ 1

0
w
(

Ti + (Ti+1 − Ti)s;Ti, Ti+1

)

(Ti+1 − Ti)s ds.
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In the case of w(T ;Ti, Ti+1) = r e−rT

e−rTi − e−rTi+1
we get

αi =
erTi

(

(r∆Ti + 1)2 + 1
)

− 2 erTi+1

r2∆T 2
i (erTi − erTi+1)

,

βi =
erTi(r∆Ti + 1) − erTi+1

r(erTi − erTi+1)∆Ti
.

As before, the conditions to be satisfied are

αiai + βibi + ci = vi (integral condition),

ai + bi + ci = ci+1 (continuity),

2ai + bi
∆Ti

=
bi+1

∆Ti+1
(smoothness).

Rearranging the equations yields

ci = vi − αiai − βibi, i ∈ {1, . . . , n} (integral),

ai =
1

2

(

∆Ti
∆Ti+1

bi+1 − bi

)

, i ∈ {1, . . . , n− 1} (smoothness),

1 + αi−1 − 2βi−1

2
bi−1

+

(

∆Ti−1

∆Ti

1 − αi−1

2
− αi

2
+ βi

)

bi

+
∆Ti

∆Ti+1

αi
2
bi+1 = vi − vi−1, i ∈ {2, . . . , n− 1} (continuity),

and for the boundary conditions we get

an =
1

2
(∆Tnd2 − bn) ,

b1 = d1∆T1,

1 + αn−1 − 2βn−1

2
bn−1 +

(

∆Tn−1

∆Tn

1 − αn−1

2
− αn

2
+ βn

)

bn = vn − vn−1 − ∆Tn
αn
2
d2.

In the example shown in Figure 2.7 the maximum difference between the interpolating

functions using w = 1
Ti+1−Ti

and w = r e−rT

e−rTi − e−rTi+1
is of order 0.1 NOK/MWh and achieved

at the end of the delivery period Tn+1 where an annual interest11 of 5% is assumed.

2.2.2.4 Approximation by a piecewise cubic polynomial

In the context of interpolating points, it is well known that cubic splines provide the

smoothest interpolation possible in the sense of Definition 2.2.3, see [de Boor and Lynch, 1966].

However, in this context where integral conditions need to be satisfied rather than function

values interpolated this does not seem to be the case as will be demonstrated below.

11
r = ln(1.05)
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As before we define

fi(t) = gi

(

t− Ti
Ti+1 − Ti

)

, t ∈ [Ti, Ti+1], gi(t) := ait
3 + bit

2 + cit+ di, t ∈ [0, 1],

and impose integral, continuity, smoothness and in addition curvature conditions and obtain

the equation system

ai
4

+
bi
3

+
ci
2

+ di = vi (integral condition),

ai + bi + ci + di = di+1 (continuity),

3ai + 2bi + ci
∆Ti

=
ci+1

∆Ti+1
(smoothness),

3ai + bi
∆T 2

i

=
bi+1

∆T 2
i+1

(curvature),

and impose zero curvature boundary conditions:

b1 = 0, 3an + bn = 0.

This leaves us with 4n − 1 equations and 4n unknowns so we are free to impose another

condition where we have chosen to set the value at the end of the period to be equal to the

average integral value:

an + bn + cn + dn = vn.

We solve this 4n× 4n equation system using a sparse matrix solver. Figure 2.8 shows that

the result can be slightly more oscillatory than for quadratic splines.

We further investigate whether quadratic or cubic splines might be the smoothest function

possible satisfying the integral constraints.

Definition 2.2.3

Let f : [a, b] → R be a continuously differentiable and piecewise twice continuously differ-

entiable function then we define a measure of smoothness ω by

ω[f ] :=

∫ b

a
f ′′(t)2 dt.

We use a very simple numerical example to illustrate how smooth the interpolations subject

to different boundary conditions are. However, it remains inconclusive on whether quadratic

or cubic splines are the smoothest possible function satisfying the integral constraints.

Consider the function sin(π3x) on the interval [0, 3] and integral constraints given by the

average values of the sin function on [0, 1], [1, 2] and [2, 3], i.e. v1 = 3
2π , v2 = 3

π and v3 = 3
2π .

The smoothness of the sin function is given by

∫ b

a
(sin(αx)′′)2 = α4

(

b− a

2
− sin(2αb) − sin(2αa)

4α

)

,
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Figure 2.8: Interpolation of the forward curve by a piecewise cubic polynomial.

function f curvature ω[f ]

sin(π3x) 1.8038721
quadratic spline, f ′(0) = f ′(3) = π

3 1.857835
quadratic spline, f ′′(0) = f ′′(3) = 0 2.051754
cubic spline, f ′′(0) = f ′′(3) = 0, f ′(0) = π

3 1.808850
cubic spline, f ′′(0) = f ′′(3) = 0, f ′′′(0) = 0 2.893934
cubic spline, f ′′(0) = f ′′(3) = 0, f(3) = v3 8.293264

Table 2.2: Comparison of the smoothness of functions satisfying the integral conditions. As
it turns out the sin function is the smoothest of the given functions.

and approximately 1.8038721 in this particular case. Table 2.2 compares the sin function

with various quadratic and cubic splines and as it turns out the sin function is smoother than

all the considered spline functions. This counterexample shows that at least the quadratic

and cubic splines with the boundary conditions considered do not possess the maximum

smoothness property according to the definition of ω. All the functions of Table 2.2 are also

plotted in Figure 2.9 and 2.10. In practice this does not play a big role as quadratic splines

tend to be very robust and smooth. Cubic splines sometimes exhibit seemingly unnecessary

oscillations as in Figure 2.8.

2.2.2.5 Approximation by a seasonal function and spline correction

There is no unique way to infer a continuous forward curve given the forward contracts with

delivery periods listed in the market, and so all methods described above which satisfy all
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the integral conditions represent possibilities of a continuous forward curve consistent with

forward market data. Nevertheless, we can identify a few more criteria which seem to be

fairly intuitive; they are connected to the dynamics of the curve, seasonality and smoothness.

The dynamics of the continuous curve should be similar to the dynamics of the observed

prices; in other words an interpolation of todays forward curve should not be too different

from tomorrow’s curve. Also, as we observe seasonality in the spot price patterns it should

be somehow reflected in the forward curve. Finally, as long as the previous conditions are

satisfied the interpolated curve should be as smooth as possible.

Our suggestion for building a continuous forward curve consists of two parts. First, a

reasonable first approximation f̄ of the continuous forward curve needs to be found using

other ways, like expert knowledge, historical data, weather forecasts or even additional

market data.12 This first approximation does not need to satisfy the integral conditions

and so we make errors

ei := F
[Ti,Ti+1]
0 −

∫ Ti+1

Ti

w(T ;Ti, Ti+1)f̄(T ) dT.

We then interpolate the errors by a quadratic spline f̃ as described above so that

∫ Ti+1

Ti

w(T ;Ti, Ti+1)f̃(T ) dT = ei.

The function f̃ can be seen as a smooth correction to the first approximation f̄ in order to

satisfy all the integral conditions. As the functions f := f̄ + f̃ obviously satisfies all integral

conditions we choose this to be our continuous forward curve. In Figure 2.11 we have used

a sum of sine functions with quarter, half and yearly seasonality as a first approximation f̄

to the forward curve. The amplitudes of the sine functions have been chosen to minimise

squared errors of f̄ to the historical spot price series.

2.2.3 Call and puts

Further commonly traded products are call or put options on futures and forwards. They are

mainly OTC traded but a few regional markets, including the NordPool, list these products

at their exchanges, too. The contract specifies the exercise price K, the time of maturity T

and the delivery period [T1, T2] of the underlying forward contract, where normally T = T1.

The payoff of a call option is then (T2 − T1)(F
[T1,T2]
T − K)+, payable at time T , where

F
[T1,T2]
T denotes the forward at time T . The buyer could use the payoff and enter straight

into a forward contract with exercise price F
[T1,T2]
T and as (T2−T1)(F

[T1,T2]
T −K)+ has been

12Assuming a liquid option market.
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Figure 2.11: Interpolation of the forward curve by a seasonal function and spline correction.
Three years worth of spot history data has been used to calibrate a seasonality function
which is then used as a first approximation of the forward curve. The difference between
the seasonality function and the observed forward prices is then corrected by a piecewise
quadratic polynomial as shown in Figure 2.7.

received the exercise price is effectively min{F [T1,T2]
T ,K}.13 Such a contract can be useful

if a consumer expects increased power consumption during the period of [T1, T2] but is not

certain at the moment t but will know for sure at time T . They could enter into a forward

contract now (t) or when they know for sure at T . In both cases they face market risks,

either of not needing the electricity and by fulfilling the forward contract to loose money

or by an uncertain forward price at time T . By buying the option they ensure the forward

price at time T does not exceed the specified price K and if the energy is not needed then

they just take the payoff.

An example of a more complex option which is tailored to the needs of power consumers

is a swing option. It normally comes bundled with a base load forward contract and then

leaves the consumer freedom to decrease or increase consumption within pre-specified limits.

These limits can define minimum and maximum volume per day and overall, allowed dates

of volume adjustments and the maximum number of volume adjustments.

13Not taking into account interest rate payments.



Chapter 3

Stochastic spot price model

There are two main approaches to construct realistic stochastic processes for the spot price

process. One is to understand and model the underlying mechanisms crucial for the price

determination. The second approach is to simply observe the market price time series and

to construct a stochastic process exhibiting the main properties of the market data. We

will follow the second approach and define a Markov process in continuous time. The basic

properties of seasonality, mean-reversion and the occurrence of spikes will be reflected by

the process. However, it will not be able to emulate the intraday behaviour in a fully sat-

isfactory way, especially when spikes occur. A supply-demand model would then probably

be necessary to force prices back to a normal level overnight. Fortunately, most of the

derivative contracts are written on daily averages and therefore the following model should

be regarded as a continuous model for base load prices.

3.1 Existing models

Regardless of the variety of the models proposed in the literature, they are mainly based on

some mean-reverting process, quite often an Ornstein-Uhlenbeck (OU) process. The most

basic model, proposed in [Lucia and Schwartz, 2002], is the exponential of an OU process

(Xt)
1 and a seasonal component f . Let W be a standard Brownian motion and let St

denote the spot price at time t then the model can be formulated as

dXt = −αXt dt+ σ dWt,

St = exp(f(t) +Xt),
(3.1)

where σ is a volatility parameter and α the speed of mean-reversion. In this model, we know

St is log-normally distributed which allows for analytic option price formulae very similar

1We generally use brackets to indicate that we mean the entire process, i.e. it is an abbreviation for
(Xt)t∈[0,T ] or (Xt)t∈R+ .

24
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to the formulae in the Black-Scholes model. The formulae are given in Appendix D.3. To

allow for a stochastic seasonality, a further component can be inserted into the model and

as long as this process has a normal-distribution, the analytical tractability is sustained.

Therefore it is suggested in [Lucia and Schwartz, 2002] to consider the model defined by

dXt = −αXt dt+ σ dWt,

dYt = µ dt+ σ̃ dBt,

St = exp(f(t) + Yt +Xt),

where B is a W -independent Brownian motion. The term f(t) + Yt can be seen as a

seasonality with stochastic trend. The main disadvantage of these models are their inability

to mimic spikes. To overcome this problem, jumps can be inserted into these models. With

(Nt) denoting a Poisson process with intensity λ and J being the jump size, the obvious

choice would be to define

dXt = −αXt dt+ σ dWt + Jt dNt,

St = exp(f(t) +Xt),
(3.2)

which is briefly mentioned in [Clewlow and Strickland, 2000, Section 2.8].2 Analytic results

are given in [Deng, 2000] which are based on transform analysis described in [Duffie et al., 2000].

The issue of calibration to historical data as well as the observed forward curve is discussed

in [Cartea and Figueroa, 2005] and practical results for the UK electricity market are given.

For these models to exhibit typical spikes it is required that the mean-reversion rate

α is extremely high, otherwise jumps do not revert quickly enough. It is suggested in

[Benth et al., 2005] to introduce a set of independent pure mean-reverting jump processes

of the form

St =
n
∑

i=1

wiY
(i)
t , dY

(i)
t = −αiY (i)

t dt+ σi dL
(i)
t , i = 1, . . . , n,

where wi are some positive weights and L(i) are independent increasing càdlàg pure jump

processes. Note, the spot price process is a linear combination of the pure jump processes

and as there is no exponential function involved, positivity of the spot is achieved by allowing

positive jumps only. The advantage of this formulation is that semi-analytic formulae for

option prices on forwards with a delivery period can be derived. However, a full analysis of

this class of models still seems to be in its early stages.

An alternative approach is to introduce two different and independent stochastic processes

and a Markov switching process, saying which of the processes is active at each time. One

2There the sde is written in terms of St by applying Itô’s formula.
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process can be considered to be the normal regime and the other one the spiky regime.

With a Markov switching process mt with values in {0, 1} the model can be described as

follows:

St := X
(mt)
t =

{

X
(0)
t if mt = 0

X
(1)
t if mt = 1

.

In [de Jong and Huismann, 2002], a time-discrete model is introduced where the normal

regime is given by a discrete version of an exponential OU process (3.1) and the spiky regime

by a series of independent log-normally distributed random variables. The independence

between the two regimes X(0) and X(1) assures the return of the price to a normal level after

the occurrence of a spike. The model also allows for analytic formulae for simple options

because for the expected value we have E[g(St)] = E[g(X
(0)
t )]P (rt = 0) + E[g(X

(0)
t )]P (rt =

1). However, it does not seem to be obvious how to define an appropriate process for

the spiky regime in continuous time. Given we assume the paths of the spike process are

continuous there will be dependence between the average sizes of two successive spikes. On

the other hand, assuming independence of any two values of the spike process with t1 6= t2

will result in some form of white noise. Neither of the two cases would represent reality

very well.

Another approach is to model a demand supply equilibrium as described in [Barlow, 2002],

where the underlying demand in electricity is assumed to be an OU process (Xt). The

demand is said to be inelastic, i.e. is independent of the current price, but the supply

is increasing as prices increase. This principle is based on the fact that the majority of

consumers receive electricity at a fixed price and will not reduce consumption if prices on

the electricity exchange rise, but more power plants will be happy to generate electricity as

the income per MWh goes up, see the marginal cost of production shown in Figure 2.1. Let

u : R+ → [0, a] be the supply function and u(s) the supply of electricity if the price was s.

The spot price process is then defined by the equilibrium of supply and demand

u(St) = Xt.

This is an implicit equation for St and a solution might not always exists which happens for

example if the demand process Xt exceeds the maximum supply a := sups≥0 u(s). If (Xt)

is an OU process there is always a positive probability that the value a will be exceeded.

To make the process (St) well defined one could cap the demand just below the maximum

supply, i.e.

u(St) = min {Xt, a− ε}+ ,

which is suggested in [Barlow, 2002], or alternatively, one could reflect the process Xt on

the maximum supply barrier as soon as it reaches it. This would have the advantage that no
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maximum price would need to be imposed as it is implicitly the case by defining a maximum

demand a−ε. The non-linearity of the supply curve transforms the OU process (Xt) in such

a way that one observes price explosions in form of spikes, see Figure 3.1. The disadvantage

of the particular demand-supply model illustrated in the figure is that jumps almost always

reach Smax and hence the jump size distribution of the real market is not well represented.

3.2 A mean-reverting model exhibiting seasonality and spikes

For the purpose of option pricing one of the main aims of this thesis is to introduce and

extensively examine a stochastic model appropriate to describe the spot electricity price

with focus on European electricity markets and the Scandinavian market in particular.

In order to keep the model analytically tractable we propose a simple continuous time pro-

cess (St) consisting of three components: a deterministic periodic function f characterising

seasonality, an Ornstein-Uhlenbeck (OU) mean-reverting process (Xt) and a mean-reverting

process with a jump component to incorporate spikes (Yt):

St = exp(f(t) +Xt + Yt),

dXt = −αXt dt+ σ dWt,

dYt = −βYt− dt+ Jt dNt,

(3.3)

where (Nt) is a Poisson-process with intensity λ and (Jt) is an independent identically

distributed (iid) process representing the jump size. Furthermore we require (Wt), (Nt) and

(Jt) to be mutually independent. At this point we make no assumption on the jump size J

but will later give examples with exponentially and normally distributed jump sizes.

The model is able to represent typical features of the electricity spot price dynamics like

seasonality, mean-reversion and the occasional occurrence of spikes, which in our opinion is

crucial for a model to be realistic. However, this model does not claim to fully represent

all properties of electricity prices as seen in the market. Historical data indicates a varying

volatility over time, see Figure 3.4, and hence would require the introduction of an additional

stochastic volatility process. Also, judging from the forward curve dynamics, a further

process describing the stochastic component of the seasonality might be needed in order

to explain the high volatility of forward contracts maturing in the far future. Finally, it

should be pointed out that the risk of a spike occurring is unlikely to be constant over time

but rather seasonal dependant. Although, it is not difficult to formulate a stochastic model

incorporating all these properties, it would be hard to work with, as far as calibration and

option pricing is concerned.
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Figure 3.1: A demand supply model. Here the demand is independent of the current price
and given by an OU process Xt. The supply depends on the current price and is here
simply a deterministic function u(s) = a − (a − b) e−λs. The spot price is therefore given
by St = g(Xt) with g(x) := max{Smax,

1
λ ln a−b

a−x} where we truncate the price if Smax is
exceeded.
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f(t) = ln(100) + 0.5 cos(2πt)
α = 7 σ = 1.4 β = 200
Jt ∼ exp(1/µJ) µJ = 0.4 λ = 4

Table 3.1: Parameters of the sample path.

The only difference of (3.3) to the well studied model (3.2) is the introduction of an indepen-

dent spike process (Yt) which allows to choose a different, and indeed higher, mean-reversion

rate β in order for the jump to revert much more quickly and so to form a shape similar

to a spike. This is crucial for modelling the NordPool market but might not be needed

in markets where the speed of mean-reversion is generally very high, like in the UKPX or

EEX.

To visualise this process, Figure 3.2 shows a sample path of the processes (Xt), (Yt) and

the composed process (St). The parameters used are not calibrated to any market but are

chosen arbitrarily for the sake of demonstration and given in Table 3.1.

The equations for the spot process (St) can be rewritten in order to eliminate the exponential

function. Defining X̃t := exp(Xt) and Ỹt := exp(Yt) and applying Itô’s formula yields

St = exp(f(t))X̃tỸt,

dX̃t

X̃t

= α

(

σ2

2α
− ln X̃t

)

dt+ σ dWt,

dỸt

Ỹt−
= −β ln Ỹt− dt+

(

eJt −1
)

dNt.

3.3 Parameter estimation based on historical data

As model (3.3) consists of three components St = exp(f(t) + Xt + Yt) and only St is

observable, estimating parameters becomes non-trivial. We follow a heuristic approach and

first determine the seasonal component. Further assumption about the structure of f need

to made and the obvious choice is to assume some form of yearly and weekly seasonality.

Here we define f to be of the form

f(t) = a0 +
6
∑

i=1

ai cos(2πγit) + bi sin(2πγit),

with γ1 = 1, γ2 = 2, γ3 = 4 for the yearly seasonality and γ4 = 365/7, γ5 = 2 × 365/7,

γ3 = 4× 365/7 for the weekly seasonality. The parameters ai and bi are chosen to minimise

squared errors between observed prices and the seasonal function
∑

j(lnStj −f(tj))
2 → min

and can be solved by a least-square algorithm.
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market σ α

NordPool 1.40 6.9
UKPX 2.70 170
EEX 4.15 140

Table 3.2: Estimated parameters of the process (Xt).

Having determined the seasonal component and removed it from the data we are left with a

realisation of the pure stochastic part lnSt− f(t) = Xt + Yt. To separate the two processes

(Xt + Yt) we use the fact that the spike process (Yt) is mainly close to zero and only

occasionally assumes big values but then only for a very short time. So we consider the time-

series as the realisation of (Xt) occasionally disturbed by big values. We therefore estimate

the parameters of the mean-reversion process Xt based on the log-de-seasonalised time-

series, see Appendix B.2, knowing that the result is likely to be disturbed by the occurrence

of spikes in the data. However, we use the parameters obtained as a first approximation

and eliminate all data points likely to be caused by a spike. As we know the conditional

distribution of the change in (Xt),

Xt+∆t −Xt e
−α∆t ∼ N

(

0,
σ2

2α
(1 − e−2α∆t)

)

,

we remove all points if they do not fall within a few standard deviations of it. Having

removed all likely jumps (i.e. points where (Yt) is not close to zero) the OU parameters

can be estimated again and are now more likely to reflect the parameters of (Xt). This

procedure can be repeated a few times and experiments show that about three iterations

seem to be sufficient. One drawback of the algorithm is that it is unable to detect small

jumps which are within a few standard deviations of the change in the mean-reverting

process. This needs to be taken into account when estimating parameters of the jump size

distribution. For the mean-reversion rate β of the spike process (Yt) we suggest to use

some ad-hoc parameter likely to be known by a practitioner. The spike process reverts

exponentially (e−β∆t) and experts will have some idea after which time ∆t the spike halves

(∆t = ln 2
β ) or is decimated (∆t = ln 10

β ). For β = 200, for example, we have ∆t ≈ 1.3/365

and ∆t ≈ 4.2/365, respectively.

The result of the parameter estimation can be seen in Figure 3.3, where the market data of

three different markets (NordPool, UKPX, EEX) have been used to calibrate the parameters

of the model and with which sample paths are generated and plotted. The parameters of

the mean-reverting process (Xt) are given in Table 3.2.

Circumstantial evidence suggests that for the NordPool data clusters of high volatility seem

to exist, see Figure 3.4. As our parameter estimation procedure is based on the believe that
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Figure 3.3: Market data (left) and sample paths of the calibrated stochastic model (right)
for three different markets: NordPool, UKPX, EEX.



CHAPTER 3. STOCHASTIC SPOT PRICE MODEL 33

we have a constant volatility parameter σ it is likely to wrongly identify too many spikes

in high volatility regimes. In order to minimise this effect we define a large range in which

we assume data-points not to belong to the spike regime, in this case we define the range

[−5, 4] times the standard deviation. We still seem to wrongly detect a few jumps which

have been caused by high volatility.

Figure 3.4 shows all spikes identified by the algorithm as well as de-seasonalised log-returns,

i.e. values Zt+∆t−Zt with Zt := lnSt−f(t). For mean-reverting processes, the distribution

of Zt+∆t − Zt e
−α∆t is also of interested and hence plotted in the same figure as well, but

as e−α∆t ≈ 0.98 in this example both graphs look very similar.

Histograms of the log-returns (Zt+∆t − Zt) are plotted in Figure 3.5 and compared to the

distribution expected from an OU-process with parameters α = 7 and σ = 1.4. Note, that

for an OU-process (Xt) we have

Xt+∆t −Xt = Xt(e
−α∆t−1) + ξt ∼ N

(

0,
σ2

2α

(

(1 − e−2α∆t) + (1 − e−α∆t)2
)

)

,

because ξt ∼ N (0, σ
2

2α(1−e−2α∆t)) is independent of Xt and assuming Xt is in its stationary

state we have Xt ∼ N (0, σ
2

2α). The data shows clearly that returns are heavy tailed which

we attribute to a non-constant volatility observed in the data and so a normal-distribution

does not perfectly fit. We also notice that the maximum-likelihood estimation of the OU-

parameters seems to be sensitive to the heavy tails which is why the normal distribution in

the figure does not visually fit very well.

Finally, the distribution of the few jumps (24 in total) identified in the NordPool data series

between 1995 and 2002 is plotted in Figure 3.6. There are no jumps of a size close to zero

as the algorithm is unable to distinguish those from the diffusive mean-reverting process.

3.4 Properties of the stochastic process

The well known properties of an Ornstein-Uhlenbeck (OU) process are given in Appendix

B.1. It remains to examine the jump process (Yt). For the sake of generality we consider a

mean-reverting jump process with a non-zero volatility.

Lemma 3.4.1

Let (Zt) be a stochastic process satisfying the stochastic differential equation (sde)

dZt = −αZt dt+ σ dWt + Jt dNt,
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with Z0 given then the random value at time t is given by

Zt = Z0 e−αt +σ
∫ t

0
e−α(t−s) dWs +

Nt
∑

i=1

e−α(t−τi) Jτi , (3.4)

where τi is the random time of the occurrence of the i-th jump.

Proof The random process (Yt) defined by Yt = eαt Zt satisfies dYt = eαt (σ dWt + Jt dNt).

Integrating this expression and solving for Zt yields the result. �

3.4.1 The spike process

The last term of 3.4 is a sum over randomly many terms consisting of random jump times

in the exponent and random jump sizes and an explicit expression for its distribution does

not seem to be known. However, as it turns out, it is possible to obtain an expression for

the moment generating function.

Lemma 3.4.2 (Moment generating function of the spike process Yt)

Let {J1, J2, . . .} be a series of iid random variables with the moment generating function

ΦJ(θ) := E eθJ being well defined for a subset θ ∈ Θ ⊂ C. Let furthermore {τ1, τ2, . . .} be

the random jump times of a Poisson process (Nt) with intensity λ, then the process (Yt)

with initial condition Y0 = 0 is given by

Yt =

Nt
∑

i=1

e−β(t−τi) Ji,

and has the moment generating function

ΦY (θ, t) := E eθYt = exp

(

λ

∫ t

0
ΦJ

(

θ e−βs
)

− 1 ds

)

, ∀θ ∈ Θ. (3.5)

Furthermore, the first two moments of Yt are given by

E[Yt] = Φ′
Y (0, t) =

λ

β
E[J ](1 − e−βt),

E[Y 2
t ] = Φ′′

Y (0, t) = E[Yt]
2 +

λ

2β
E[J2](1 − e−2βt),

and in particular we have

var[Yt] =
λ

2β
E[J2](1 − e−2βt).

Proof We prove this lemma by considering the conditional expectation given the first jump,

and then by deriving an ode for the moment generating function ΦY (θ, t) with derivatives

in the time variable t.
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The mutual independence of Js, Jt and τi (for all s 6= t) allows us to write the expectation

conditioned on τ1 as

E

[

eθYt |τ1 = s
]

= E exp
(

θ e−β(t−s) J
)

E exp

(

θ

Nt
∑

i=2

e−β(t−τi) Jτi |τ1 = s

)

.

Based on properties of the Poisson process, the random sum conditioned on τ1 = s has

the same distribution as the same sum, starting with the first jump i = 1 until time t − s

without condition, and hence

E

[

eθYt |τ1 = s
]

= E exp
(

θ e−β(t−s) J
)

ΦY (θ, t− s)

= ΦJ

(

θ e−β(t−s)
)

ΦY (θ, t− s).
(3.6)

Based on these initial considerations we are now able to determine the unconditional ex-

pectation. Since the first jump-time is exponentially distributed τ1 ∼ Exp(λ) we have

ΦY (θ, t) = E

[

E

[

eθYt |τ1
]]

=

∫ t

0
E

[

eθYt |τ1 = s
]

λ e−λs ds.

Inserting the conditional expectation (3.6) yields

ΦY (θ, t) =

∫ t

0
ΦJ(θ e−β(t−s))ΦY (θ, t− s)λ e−λs ds

=

∫ t

0
ΦJ(θ e−βs)ΦY (θ, s)λ e−λ(t−s) ds,

which is an integral equation but can simply be solved by differentiating with respect to t

to give

∂ΦY

∂t
(θ, t) = ΦJ(θ e−βt)ΦY (θ, t)λ− λ

∫ t

0
ΦJ(θ e−βs)ΦY (θ, s)λ e−λ(t−s) ds

= λ
(

ΦJ(θ e−βt) − 1
)

ΦY (θ, t),

and therefore

ΦY (θ, t) = exp

(

λ

∫ t

0
ΦJ(θ e−βs) − 1 ds

)

,

because ΦY (θ, 0) = E exp(θZ0) = 1 as Z0 = 0. �

Example 3.4.3 (Exponentially distributed jump size)

Let the jump size be exponentially distributed with an average jump height µJ , J ∼
Exp(1/µJ), then its moment generating function is ΦJ(θ) = 1

1−θµJ
, θµJ < 1. The inte-

gral can then be solved and we obtain

ΦY (θ, t) =

(

1 − θµJ e−βt

1 − θµJ

)

λ
β

, θµJ < 1.
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Figure 3.7: Expectation of the pure spike process eYt = ΦY (1, t) with J ∼ Exp(1/µJ) and
J ∼ N (µJ , µ

2
J), respectively. The parameters coincide with those of the previous example,

i.e. β = 200, µJ = 0.4 and λ = 4. For a rough but quick approximation one can use the
fact that ΦY (θ, t) = 1 + E[Yt]θ + 1

2 E[Y 2
t ]θ2 + O(θ3).

Setting θ = 1 gives the expectation value of the exponential spike process and is shown in

Figure 3.7, where we compare it to the expectation value of the same process but with a

normally distributed jump size. In the long term we have ΦY (θ, t) → (1 − θµJ)
−λ/β for

(t → ∞). Furthermore we have for the mean and variance of the spike process Yt with

Y0 = 0:

E[Yt] =
λµJ
β

(1 − e−βt),

var[Yt] =
λµ2

J

β
(1 − e−2βt).

Remark 3.4.4 (Asymptotics for β → ∞)

To analyse the behaviour of the moment generating function for large β we make the

substitution u = θ e−βs in the integrand to obtain

ΦYt(θ) = exp

(

λ

β

∫ θ

θ e−βt

ΦJ(u) − 1

u
du

)

.

For a fixed θ the following approximation applies

∫ θ e−βt

0

ΦJ(u) − 1

u
du = θ e−βt E[J ] + O(e−2βt),

because ΦJ(u) = 1 + E[J ]u+ O(u2), (u→ 0) and so

ΦYt(θ) = exp

(

λ

β

(∫ θ

0

ΦJ(u) − 1

u
du− θ e−βt E[J ] + O(e−2βt)

))

.
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3.4.2 Approximations of the spike process

Ideally we would like to know the density of the spike process at expiry YT in an explicit form.

What we have so far is the moment generating function from which we could obtain the

density by using a Laplace inversion method. However, a simple, yet powerful approximation

will lead the way for explicit approximate expressions for the probability density function.

The basic idea is that for very high mean reversion rates β and small jump intensities λ

only the last jump mainly contributes to the jump distribution. We first introduce the

approximation, demonstrate that its moment generating function converges to the moment

generating function of the spike process for β → ∞ or λ → 0, then derive its probability

density function and finally make further approximations.

Lemma 3.4.5

The truncated spike process, defined by

Ỹt :=

{

JNt e−β(t−τNt) Nt > 0

0 Nt = 0
(3.7)

is identically distributed as

Zt :=

{

J1 e−βτ1 τ1 ≤ t

0 τ1 > t

Proof This lemma follows directly from the reversibility property of Poisson processes. If

(Nt) is a Poisson process then (−N−t) is also a Poisson process. As τNt is the jump time

of the last jump before t this translates to the first jump of the reversed process and hence

t − τNt and τ1 are identically distributed, given Nt > 0. If Nt = 0 then there has been

no jump in [0, t] and the same applies for the reversed process and so this is equivalent to

τ1 > t. The rest follows. �

Lemma 3.4.6 (Moment generating function of the approximated spike process)

Let the moment generating function of J be given by ΦJ(θ), θ ∈ Θ, then the approximated

spike process Ỹt as defined above has the moment generating function

ΦỸt
(θ, t) = 1 + λ

∫ t

0

(

ΦJ(θ e−βs) − 1
)

e−λs ds

and the first two moments are given by

E[Ỹt] =
λ

β + λ
E[J ]

(

1 − e−(β+λ)t
)

,

E[Ỹ 2
t ] =

λ

2β + λ
E[J2]

(

1 − e−(2β+λ)t
)

.
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Proof According to Lemma 3.4.5 we only need to determine the moment generating

function of

Zt := J e−βτ 1τ≤t, τ ∼ Exp(λ),

where 1A is the indicator function which yields one if the statement A is true and zero

otherwise. Given the jump time τ we have

E[eθZt |τ = s] = ΦJ(θ e−βs 1s≤t),

and so

E[eθZt ] = E[E[eθZt |τ ]]

=

∫ ∞

0
ΦJ(θ e−βs 1s≤t) e−λs ds

=

∫ t

0
ΦJ(θ e−βs) e−λs ds+ e−λt .

The first two moments are given by E[Ỹt] = Φ′
Ỹt

(0) and E[Ỹ 2
t ] = Φ′′

Ỹt
(0). �

Remark 3.4.7 (Point-wise convergence of the moment generating functions)

The moment generating function of the truncated spike process converges point-wise to the

moment generating function of the spike process for λ→ 0 and β → ∞. This can easily be

seen for λ→ 0. Fix all other parameters and set g(s;β, θ) := ΦJ(θ e−βs) − 1, then

ΦYt(θ) = exp

(

λ

∫ t

0
g(s;β, θ) ds

)

= 1 + λ

∫ t

0
g(s;β, θ) ds+ O(λ2),

ΦỸt
(θ) = 1 + λ

∫ t

0
g(s;β, θ) e−λs ds = 1 + λ

∫ t

0
g(s;β, θ)(1 + O(λs)) ds.

To see the convergence for β → ∞ one needs to understand the behaviour of g(s;β, θ) which

is equal to one at s = 0 and quickly tends to zero for big values of β, because we have

g(s;β, θ) = ΦJ(0) − 1 + Φ′
J(0)θ e−βs + O(θ2 e−2βs) = E[J ]θ e−βs + O(θ2 e−2βs),

and so the integral of g(s;β, θ) between 0 and t is almost the same as the same integral

between 0 and a very small value, say ε(β). In this tiny interval one can approximate e−λs

by 1. Finally, linearising the exp function around zero will give the same expressions for

ΦYt and ΦỸt
. More formally we keep all parameters fixed and split the integral

∫ t

0
g(s;β, θ) ds =

∫

q

1
β

0
g(s;β, θ) ds+

∫ t

q

1
β

g(s;β, θ) ds

= O(
√

1/β) + O(e−
√
β) = O(

√

1/β)
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Figure 3.8: Moment generating function of Yt and Ỹt, denoted by mgf and approximation,
respectively. In the left we use J ∼ Exp(1/µJ) and in the right J ∼ N (µJ , µ

2
J). Parameters

used are given in Table 3.1 and t = 1.

and so we have

ΦYt(θ) = 1 +

∫ t

0
g(s;β, θ) ds+ O(1/β).

Finally, the difference between the generating functions is

ΦYt(θ) − ΦỸt
(θ) =

∫ t

0
g(s;β, θ)(1 − e−λs) ds+ O(1/β)

=

∫

q

1
β

0
g(s;β, θ)(1 − e−λs) ds+ O(e−

√
β) + O(1/β)

= O(1/β) + O(e−
√
β) + O(1/β) = O(1/β).

Note, this approximation does not necessarily show the highest order of convergence. Two

examples of the approximated and exact moment generating function using our standard

parameters can be seen in Figure 3.8.

Lemma 3.4.8 (Distribution of the approximated spike process)

Let the jump size distribution be given by a density function fJ , then the approximated

spike process Ỹt as defined above has the cdf

FỸt
(x) = e−λt 1x≥0 +

∫ x

−∞
fỸt

(y) dy, t ≥ 0,

with

fỸt
(x) =

λ

β

1

|x|1−
λ
β

∣

∣

∣

∣

∣

∫ x eβt

x
fJ(y) |y|−

λ
β dy

∣

∣

∣

∣

∣

, x 6= 0. (3.8)

Proof Based on Lemma 3.4.5 it suffices to determine the distribution of

Ỹt = JZ1τ≤t, Z := e−βτ , τ ∼ Exp(λ).

It follows that Z is the β
λ th power of an uniformly distributed random variable on [0, 1] and

its density is given by

fZ(x) =
λ

β
x−(1−λ

β
)
1x∈[0,1].
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As P(τ > t) = e−λt we obtain the cdf of Z1τ≤t as

FZ1τ≤t
(x) = e−λt 1x≥0 +

∫ ∞

−∞
fZ1τ≤t

(y) dy,

fZ1τ≤t
(x) =

λ

β
x−(1−λ

β
)
1x∈[e−βt,1],

and because J and Z1τ≤t are independent, Proposition A.1.1 is applicable and so we obtain

the distribution of the product as

FJZ1τ≤t
(c) = e−λt 1c≥0 +

∫ c

−∞
fJZ1τ≤t

(x) dx,

fJZ1τ≤t
(c) =

∫ ∞

−∞
fZ1τ≤t

(c/x)
fJ(x)

|x| dx.

With

fZ1τ≤t
(c/x) =

λ

β

1

c
1−λ

β

1x∈[c,c eβt]x
1−λ

β , c > 0,

fZ1τ≤t
(c/x) =

λ

β

1

|c|1−
λ
β

1x∈[c eβt,c] |x|1−
λ
β , c < 0,

the desired result follows. �

Example 3.4.9 (Exponential jump size distribution)

Let J ∼ Exp(1/µJ) be exponentially distributed. Based on the lemma above the distribu-

tion of the truncated spike process Ỹt is given by Equation (3.8) and hence

fỸt
(x) =

λ

βµ
λ
β

J

Γ(1 − λ
β ,

x
µJ

) − Γ(1 − λ
β ,

x eβt

µJ
)

x
1−λ

β

, x > 0,

where Γ(a, x) is the incomplete Gamma function defined by

Γ(a, x) :=

∫ ∞

x
ta−1e−t dt.

For λ
β very small and x big we use the approximation

Γ(1 + ∆a, x) =

∫ ∞

x
t∆a e−t dt ≈ e−x, x > 0, ∆a→ 0.

Inserting this approximation into the density function and re-normalising the factor to

satisfy
∫∞
0 fỸt

(x) dx = 1 − e−λt we get

fỸt
(x) ≈ 1

Γ(λβ )µ
λ
β

J

e
− x

µJ − e
−x eβt

µJ

x
1−λ

β

, x > 0, (3.9)
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Figure 3.9: Distribution of the spike process (Yt) at T with a jump size of J ∼ Exp(1/µJ).
We use approximation (3.9) and compare it with the exact density as produced by a Monte-
Carlo simulation. The parameters used are given in Table 3.1.

and so the stationary distribution is similar to a Gamma distribution, i.e.

fỸt
(x) ≈ 1

Γ(λβ )µ
λ
β

J

x
λ
β
−1

e
− x

µJ 1x>0, t→ ∞.

The approximation fits very well the exact density for typical market parameters as can be

seen in Figure 3.9.

Remark 3.4.10 (Further approximations of the tails of ỸT )

For many jump size distributions one will not be able to obtain an explicit expression for

the pdf (3.8) due to the nature of the integral. Further approximations can be made to

allow for an explicit formula. Assuming |x| is big enough and λ
β is close to zero we can

approximate the term |y|−
λ
β in the integral of Equation (3.8) by the constant it assumes on

the lower bound x and so we obtain

fỸt
(x) ≈ λ

β

FJ(x eβt) − FJ(x)

|x| , (x→ ∞). (3.10)

Note, the area under the graph of this approximation is not necessarily 1 − e−λt which is

required in order to make FỸt
a distribution function, as P (Ỹt = 0) = e−λt.

The integration of (3.8) goes from x to x eβt and so for values of eβt close to one we can

even approximate the entire integrand of Equation (3.8) by the constant it assumes at the

point x. Re-normalising to make FỸt
a distribution results in

fỸt
(x) ≈ (1 − e−λt)fJ(x), (βt→ 0). (3.11)
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Example 3.4.11 (Normal jump size distribution)

Assuming J ∼ N (µJ , σ
2
J) is normally distributed we can use Equation (3.10) or (3.11)

to approximate the density of the spike process Yt. Figure 3.10 shows the quality of the

approximations for some standard parameters. As expected they perform quite well for big

absolute values of Y .

3.4.3 The combined process

Having examined the properties of the spike process Yt we can conclude properties of the

sum Xt + Yt and consequently St = exp(f(t) + Xt + Yt). First we derive the moment

generating function of f(t) +Xt + Yt and then the density function of Xt + Yt for which we

also give approximations.

Corollary 3.4.12

Let the spot process (St) be defined by (3.3) and let (Zt) be its natural logarithm, i.e.

Zt := lnSt = f(t) +Xt + Yt. The moment generating function of Zt is then

E eθZt = exp

(

θf(t) + θX0 e−αt +θ2 σ
2

4α
(1 − e−2αt) + θY0 e−βt +λ

∫ t

0
ΦJ

(

θ e−βs
)

− 1 ds

)

.

(3.12)

Proof The processes X and Y are independent so the expectation of the product is the

product of the expectations. The moment generating functions of X and Y are given by

Equation B.6 and Lemma 3.4.2 which yield the result. �

The expectation value of the spot process S immediately follows by setting θ = 1.

Corollary 3.4.13 (Expectation of the spot price process ST )

Let the spot price process (St) be defined by (3.3), then its expectation value is

E[ST |Xt, Yt] = exp

(

f(T ) +Xt e
−α(T−t) +Yt e

−β(T−t) +
σ2

4α
(1 − e−2α(T−t)) + λ

∫ T−t

0
ΦJ

(

e−βs
)

− 1 ds

)

.

The structure of the expectation value is very clear. It consists of four terms: the seasonal

component, initial terms, a contribution from the volatility and a jump term.

Example 3.4.14 (Exponentially distributed jump size)

If the jump size is exponentially distributed, J ∼ Exp(1/µJ), then the expectation value is

ESt = exp

(

f(t) +X0 e−αt +Y0 e−βt +
σ2

4α
(1 − e−2αt)

)(

1 − µJ e−αt

1 − µJ

)
λ
α

, µJ < 1.

An example plot is shown in Figure 3.11. In the long term we have

ESt → ef(t)+σ2/4α(1 − µJ)
− λ

α , (t→ ∞).
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Figure 3.10: Distribution of the spike process (Yt) at T with a jump size of J ∼
N (1/µJ , 1/µ

2
J). We use approximation (3.10) for T = 1 and (3.11) for T = 1/365 and

compare it with the exact density as produced by a Monte-Carlo simulation of 100 million
runs. The parameters used are given in Table 3.1.
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Figure 3.11: Expectation of the spot price process with parameters of Table 3.1, but with
X0 = 0 and Y0 = 0.

Anticipating the application of pricing plain vanilla call or put options, we state a result

from [Duffie et al., 2000]. See also Appendix C for a brief account.

Remark 3.4.15

Let Z be a Markov process satisfying the regularity conditions of Definition C.2.1. The

expectation value, defined by

Gθ,c(K,T, z0) := E

[

eθZT 1cZT≤K
]

,

is then given by

Gθ,c(K,T, z0) =
1

2
ΦZ(θ, T ) − 1

π

∫ ∞

0

1

ν
=
(

ΦZ(θ + iνc, T ) e−iνθ
)

dν,

where ΦZ denotes the complex valued moment generating function and =(z) the imaginary

part of a complex number z ∈ C. If the function Gθ,c is known, it is easy to determine the

expectation value of a call option payoff. Let Zt := lnSt be the logarithm of St, then we

have

E[(ST −K)+] = E[ST1ST≥K ]−E[K1ST≥K ] = G1,−1(− lnK,T, z0)−KG0,−1(− lnK,T, z0).

3.4.4 Approximations of the combined process

We use approximations of the density of Yt to obtain approximations to the density of the

sum of both processes Xt + Yt.
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Corollary 3.4.16 (Distribution of Xt + Ỹt)

Let Xt be the Ornstein-Uhlenbeck process defined by our model (3.3) with X0 = 0 and Ỹt

the approximation to the spike process defined by (3.7) where the jump size J has a density

fJ . Then Xt + Ỹt has a density and it is given by

fXt+Ỹt
(c) = e−λt fXt(c) +

∫ ∞

−∞
fỸt

(c− x)fXt(x) dx,

fXt(x) =
1√

2πσX
exp

(

− x2

2σ2
X

)

,

fỸt
(x) =

λ

β

1

|x|1−
λ
β

∣

∣

∣

∣

∣

∫ x eβt

x
fJ(y) |y|−

λ
β dy

∣

∣

∣

∣

∣

, x 6= 0,

with σ2
X = σ2

2α(1 − e−2αt) being the variance of Xt.

Proof This is a direct result of Proposition A.1.2 and Lemma 3.4.8 and the fact that

Xt ∼ N (0, σ
2

2α(1 − e−2αt)), see Equation (B.4). �

Remark 3.4.17

Corollary 3.4.16 is the key to an approximation to the density of our spot price process

St = exp(f(t)+Xt+Yt). Note that Ỹt is an approximation to the spike process by considering

the last jump only.

For non-zero initial conditions and using the notation of Corollary 3.4.16, the density of

lnSt is then approximately given by

flnSt(x) ≈ fXt+Ỹt

(

x− f(t) −X0 e−αt−Y0 e−βt
)

.

Remark 3.4.18

For very short time horizons so that βt→ 0 we can use Approximation (3.11) for the spike

process to obtain

fXt+Ỹt
(c) ≈ e−λt fXt(c) + (1 − e−λt)

∫ ∞

−∞
fJ(c− x)fXt(x) dx,

= e−λt fXt(c) + (1 − e−λt)fXt+J(c),

fXt(x) =
1√

2πσX
exp

(

− x2

2σ2
X

)

,

with σ2
X = σ2

2α(1 − e−2αt) being the variance of Xt. This is a very explicit expression. The

only function to be determined is fXt+J which is the density of the sum of a normally

distributed random variable and the jump size distribution J .
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Figure 3.12: Distribution of Xt + Yt for t = 1/365 and J ∼ Exp(1/µJ). Parameters are
based on Table 3.1.

Example 3.4.19 (Exponential jump size distribution)

Let J ∼ Exp(1/µJ) and let β be big and βt be very small, then according to Remark 3.4.18

and Lemma A.1.3 we get

fXt+Ỹt
(x) ≈ e−λt fXt(x) + (1 − e−λt)fXt+J(x),

fXt(x) =
1√

2πσX
exp

(

− x2

2σ2
X

)

,

fXt+J(x) =
1

µJ
exp

(

σ2
X

2µ2
J

− x

µJ

)

N

(

x

σX
− σX
µJ

)

,

which is illustrated in Figure 3.12. The function N(x) denotes the cumulative distribution

of a standard N (0, 1) normally distributed random variable.

Example 3.4.20 (Normal jump size distribution)

Let J ∼ N (µJ , σ
2
J) and β be large and βt very small, then according to Remark 3.4.18 we

get

fXt+Yt(x) ≈ e−λt fXt(x) + (1 − e−λt)fXt+J(x),

fXt(x) =
1√

2πσX
exp

(

− x2

2σ2
X

)

,

fXt+J(x) =
1

√

2π(σ2
X + σ2

J)
exp

(

− (x− µJ)
2

2(σ2
X + σ2

J)

)

,

which is illustrated in Figure 3.13.
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Figure 3.13: Distribution of Xt + Yt for t = 1/365 and J ∼ N (µJ , µ
2
J). Parameters are

based on Table 3.1.

Remark 3.4.21 (Longer time horizons)

For longer time horizons t it does not seem to be immediately clear which approximation

might yield a simple expression as it is the case for very short time horizons t→ 0. A very

rough approximation would be to assume the distribution is close to a normal distribution

but where the mean and variance are matched to the values of the combined process X+Y .

This works fairly well for option pricing as will be demonstrated later in this thesis but does

not describe the tail behaviour sufficiently well. Another way would be to assume the same

form as before, see Remark 3.4.18, i.e.

fXt+Ỹt
(x) ≈ pfXt(x) + (1 − p)fXt+J(x), (3.13)

with p yet to be determined. The reasoning behind this approach is as follows. Assuming

we are in a stationary situation, i.e. t→ ∞ then the spike process Ỹt is approximately given

by Ỹt ≈ e−βτ J and the distribution of e−βτ is, according to the proof of Lemma 3.4.8, the
β
λ th power of a uniform [0, 1] random variable and hence its weight is concentrated around

0. So the idea is to approximate it by

fe−βτ (x) ≈ λ

β
x−(1−λ

β
)
1x∈[δ,1],

P(e−βτ = 0) = p = δ
λ
β .

This approximation is exact for e−βτ 1τ≤t if we chose δ = e−βt. However, if δ is chosen

too small, approximation (3.11) is not applicable as it is based on setting the integrand of

(3.8) to a constant where the integral goes from a value x to x
δ . There, the closer δ is to 1
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the better, so there is a tradeoff between the two approximations but for the moment we

assume there exists a value δ so that both approximations are fairly accurate. In practice

we determine the parameter p = δ
λ
β so that it matches the first moment, i.e.

pE[Xt] + (1 − p) E[Xt + J ] = E[Xt + Yt],

and so we get

p = 1 − E[Yt]

E[J ]
= 1 − λ

β
(1 − e−βt).

Alternatively one could also match the second moment and obtain

p = 1 − E[Y 2
t ] + 2 E[Xt] E[Yt]

E[J2] + 2 E[Xt] E[J ]
.

Matching the second moment seems to give a slightly better tail approximation. Figure

3.14 shows the approximation for exponentially and normally distributed jump sizes. For

the parameters used we get p = 0.98 and p = 0.9898 for matching the first and second

moments, respectively. This corresponds to δ ≈ 0.364 and δ ≈ 0.599, respectively. In the

graphs we choose p to match the second moment.

3.4.5 Conditional expectations

In reality we are faced with the situation that only the processes (Xt+Yt) is observable but

not (Xt) and (Yt) individually. This makes it difficult to determine the initial conditions

Xt and Yt. If a spot price history till that time is known one could use a filtering method

to split the sum (Xt + Yt) into its two components with some little error. One can view

(Xt + Yt) as the spike process (Yt) being obscured by some noise (Xt). More heuristically

one could simply say Yt = 0 given the last spike was sufficiently far away, say if e−β∆t ≤ ε.

Otherwise we are in the spike regime and need to know the last observation Xs + Ys at the

time s just before the spike. There we also assume Ys = 0. Knowing Xs we can make a

good estimation of the jump size and so the rest follows.

In this subsection we only consider the case where no history is available and then the best

estimate will be to use conditional expectations, i.e. if we know X0 + Y0 = c one could

say X0 = E[X̄|X̄ + Ȳ = c] where X̄ and Ȳ are stationary distributions of (Xt) and (Yt),

respectively.

Proposition 3.4.22

Let X have a density fX and let J have a density fJ and let Y be defined by approximation

(3.11), i.e.

FY (x) =

∫ x

−∞
fY (y) dy + e−λt 1x≥0,

fY (x) = (1 − eλt)fJ(x),
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Figure 3.14: Distribution of Xt + Yt for t = 1 and J ∼ Exp(1/µJ) and J ∼ N (µJ , µ
2
J),

respectively. Parameters are based on Table 3.1.
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then we have

E[X|X + Y = c] =
E[X|X + J = c] + ch(c)

1 + h(c)
,

h(c) :=
e−λt

1 − e−λt
fX(c)

fX+J(c)
.

Proof The conditional expectation is given by Lemma A.2.5 which says

E[X|X + Y = c] =

∫∞
−∞ xfX(x)fY (c− x) dx+ pcfX(c)

fX+Y (c)
,

where we have p = e−λt and, according to Remark 3.4.18, it is given by

fX+Y (c) = pfX(c) + (1 − p)fX+J(c).

Dividing by (1 − p)fX+J(c) yields

E[X|X + Y = c] =

R ∞

−∞
xfX(x)fJ (c−x) dx

fX+J (c) + p
1−p

cfX(c)
fX+J (c)

1 + p
1−p

fX(c)
fX+J (c)

.

�

This Proposition gives some good results for the conditional expectation E[Xt|Xt + Yt = c]

based on approximation (3.11) which is only valid for small t.

Example 3.4.23 (Exponential jump size distribution)

Let X ∼ N (µX , σ
2
X) be normally and J ∼ Exp(1/µJ) be exponentially distributed. Ac-

cording to Lemma A.2.4 and Lemma A.1.3 we have

E[X|X + J = c] = µX +
σ2
X

µJ
− σX

ϕ
(

c−µX−σ2
X/µJ

σX

)

N
(

c−µX−σ2
X/µJ

σX

) ,

fX+J(x) =
1

µJ
exp

(

σ2
X

2µ2
J

+
µX − x

µJ

)

N

(

x− µX
σX

− σX
µJ

)

,

where N and ϕ are the distribution and density of a N (0, 1) random variable, respectively,

i.e.

ϕ(x) :=
1√
2π

e−x
2/2, N(x) :=

∫ x

−∞
ϕ(y) dy.

Figure 3.15 shows a plot of the function E[Xt|Xt + J = c] which cannot be seen as an

approximation to E[Xt|Xt + Yt = c] but nevertheless seems to provide the right asymptotic

behaviour for |c| → ∞. However, for short time horizons and using the approximation of

Proposition 3.4.22 we obtain a very good fit to the function obtained from a Monte-Carlo

simulation which is shown in Figure 3.16.
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Figure 3.15: Conditional expectations given the knowledge of the sum Xt + Yt = c. An
approximation to the function g(c) := E[Xt|Xt + Yt = c] is plotted and compared to the
result of a Monte-Carlo simulation with 200 million paths. Here we use E[Xt|Xt + J = c]
as the approximation.
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Figure 3.16: Conditional expectations given the knowledge of the sum Xt + Yt = c. An
approximation to the function g(c) := E[Xt|Xt + Yt = c] is plotted and compared to the
result of a Monte-Carlo simulation with 200 million paths. Parameters are given in Table
3.1, the jump size is exponentially distributed J ∼ Exp(1/µJ) and t = 1/365. For these
parameters we obtain standard deviations of σX ≈ 0.0726 and σY ≈ 0.0462.
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Figure 3.17: Conditional expectations given the knowledge of the sum Xt +Yt. An approx-
imation to the function g(c) := E[Xt|Xt + Yt = c] is plotted and compared to the result of
a Monte-Carlo simulation with 200 million paths. Parameters are given in Table 3.1, the
jump size is normally distributed J ∼ N (µJ , µ

2
J) and t = 1/365. For these parameters we

obtain standard deviations of σX ≈ 0.0726 and σY ≈ 0.0462.

Example 3.4.24 (Normal jump size distribution)

Let X ∼ N (µX , σ
2
X) and J ∼ N (µJ , σ

2
J) be normally distributed. According to Lemma

A.2.3 we have

E[X|X + J = c] =
σ2
X

σ2
X + σ2

J

(

c−
(

µJ − σ2
J

σ2
X

µX

))

.

Figure 3.17 shows how well the approximation of Proposition 3.4.22 works for some typical

market parameters and one day to maturity.

Example 3.4.25 (Stationary distribution)

Based on Remark 3.4.21 we can also approximate the conditional expectation for big t or

even t → ∞, i.e. for the stationary case. Because the approximation is only very rough

we cannot expect a perfect fit, but at least the shape of the curves is close to the exact

functions as shown in Figure 3.18.

Another important issue is to determine the density of the sum of both processes Xt + Yt

given the initial conditionX0+Y0 = c. This problems turns up when faced with expectations

of the form E[g(St)|S0 = s] where St is some function of Xt + Yt. However, this problem is

only well defined once we make some assumption of the distribution of X0 and Y0.

Here we compare two approaches, one is to assign X0 and Y0 their conditional expectations
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Figure 3.18: Conditional expectations given the knowledge of the sum Xt +Yt. An approx-
imation to the function g(c) := E[Xt|Xt + Yt = c] is plotted and compared to the result
of a Monte-Carlo simulation with 200 million paths. Parameters are given in Table 3.1,
the jump size is exponentially and normally distributed, respectively and t = 1. For these
parameters we obtain standard deviations of σX ≈ 0.374 and σY ≈ 0.0566.
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based on the knowledge of the sum, i.e.

X0 = c1 := E[X̄|X̄ + Ȳ = c], Y0 = c2 := c−X0,

where X̄ and Ȳ are the independent random variables representing the stationary distribu-

tion of (Xt) and (Yt). Then the conditional distribution follows directly from the conditional

distributions of Xt and Yt given X0 and Y0:

fXt+Yt|X0+Y0=c(x) = fXt+Yt|X0=c1,Y0=c2(x).

Alternatively, one could say X0 and Y0 assume the stationary distributions. A comparison

of the two approaches is shown in Figure 3.19 where we use the Monte-Carlo method to

obtain the densities. As can be seen, both methods result in very similar densities for some

values of c but are completely different for others. Generally, the distributions for values

of c within about two standard deviations of the process X̄ are very similar and for values

above about three or four standard deviations are considerably different, i.e. the second

approach results in much flatter and heavier tailed distributions. This result is intuitively

clear, because if we know X̄ + Ȳ is below two standard deviations and given Ȳ is close to

zero most of the time it is very likely that the sum is purely achieved by X̄ and Ȳ is almost

zero. However, if X̄+ Ȳ is greater than three standard deviations of X̄ then it is unlikely X̄

could have achieved that value alone and we know a jump has very likely occurred and then

it is very hard to give an accurate estimation for X̄ as basically we can expect it to be in

a range of a few standard deviations of X̄ itself. Higher uncertainty in the initial condition

will result in a much broader distribution, because if Y0 is bigger then Xt + Yt will revert

much faster to zero than if Y0 was smaller and X0 bigger.

To determine the distribution we denote Zt := Xt + Yt and let fZt(x) be the density of Zt

given X0 = 0 and Y0 = 0. Recall that for X0 = x0 and Y0 = y0 the density is given by

fZt(x− x0 e−αt−y0 e−βt) and so we state

fXt+Yt|X0+Y0=c(x) =

∫ ∞

−∞
fXt+Yt

(

x− x0 e−αt−(c− x0) e−βt
)

fX̄|X̄+Ȳ=c(x0) dx0.

In order to evaluate this expression further we use above approximations which are based

on fỸt
(x) ≈ (1 − p)fJ(x) and P (Ỹt = 0) = p :

fXt+Yt(x) ≈ e−λt fXt(x) + (1 − e−λt)fJ(x),

fX̄+Ȳ ≈ pfX̄(x) + (1 − p)fJ(x),

fX̄|X̄+Ȳ=c(x) =
fX̄(x)fȲ (c− x)

fX̄+Ȳ (c)
,

P (X̄ = c|X + Y = c) ≈ p
fX̄(c)

fX̄+Ȳ (c)
,
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Figure 3.19: Density of Xt + Yt given X0 + Y0 = c assuming stationary distribution for
X0 and Y0. This is plotted by the red curve using Monte-Carlo. The other curves show
the distribution obtained if one assumes a particular value for X0. Parameters are given in
Table 3.1, the jump size is exponentially distributed, t = 1/365, and c = 0.5 in the left and
c = 1.5 in the right graph. For the left graph, we have E[X̄|X̄ + Ȳ = 0.5] ≈ 0.494 and the
density for X0 = 0 only shows the sensitivity to the choice of the initial condition. For the
right graph, we have E[X̄|X̄ + Ȳ = 1.5] ≈ 0.793 but the approximation used in Figure 3.18
yields 0.658.

where p is determined to match one of the moments of the stationary distribution as de-

scribed in Remark 3.4.21. With that we obtain

fXt+Yt|X0+Y0=c(x) ≈ (1 − p)

∫ ∞

−∞
fXt+Yt

(

x− x0 e−αt−(c− x0) e−βt
) fX̄(x0)fJ(c− x0)

fX̄+Ȳ (c)
dx0

+ pfXt+Yt(x− c e−αt)
fX̄(c)

fX̄+Ȳ (c)
.

The second term of the result is the density of Xt + Yt given Y0 = 0 and X0 = c scaled by

some factor and is actually visible in Figure 3.19 where c = 1.5. For a normally distributed

jump size J the integral can be solved analytically but for an exponential distribution we

fail to solve the integral.



Chapter 4

Option pricing

The electricity market with the model presented in the previous section is obviously in-

complete. Not only are we faced with a non-hedgeable jump risk but also can we not use

the underlying process (St) to hedge derivatives due to inefficiencies in storing electricity.

We give a short account of utility based pricing approaches but focus mainly on arbitrage

pricing methods. Even though the underlying cannot be used to hedge, derivatives have to

satisfy certain consistency conditions. Otherwise arbitrage opportunities could be exploited

by setting up a portfolio consisting of different derivatives.

4.1 Utility indifference pricing

Utility theory is based on the belief that each individual agent possesses a utility function

and if a decision is to be made the agent acts in such a way which maximises expected

utility. For the purpose of this section we do not assume any particular stochastic model

for the underlying (St) but keep the discussion general.

Say U : R → R is a utility function which assigns each value of wealth x a number which can

be interpreted as the happiness of an agent given they possess x amount of cash. We will

only consider monotonic increasing functions U which are called consistent utility functions.

Furthermore, we call x the certainty equivalent of a random payoff X if x has the same

utility as the expected utility of the random payoff, i.e.

U(x) = E[U(X)].

The utility function is called risk averse if the certainty equivalent is less than the expected

value of a random payment, x < E[X], which is the case for all concave utility functions.

58
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To quantify the strength of risk aversion we consider a random payoff X with E[X] = 0 and

var[X] = 1 and see by how much the certainty equivalent reduces, i.e.

U(x+ δ) = E[U(x+ εX)].

The bigger the ratio −δ/ε the more risk averse the agent is. Using Taylor series expansion

we see

U(x) + δU ′(x) ≈ U(x) + εU ′(x) E[X] +
1

2
ε2U ′′(x) E[X2],

and so one defines the risk aversion of U by −U ′′/U ′.

For pricing purposes we only consider the exponential utility here, i.e.

U(x) = −γ e−γx,

which has a constant risk aversion −U ′′/U ′ = γ and has the nice property that wealth

factors out, i.e. U(x+ y) = U(x) e−γy.

4.1.1 Pricing without the possibility of hedging

Now, let our market consist of the underlying price process (St) and some derivative paying

out g(ST ) at maturity T , where the spot price process cannot be used for hedging purposes.

Assuming our agent gets the offer to receive c units of the derivative for the price p. The

offer will then be accepted by the agent if it increases expected utility or the agent will

be indifferent if expected utility remains the same. Such a price p is called the utility

indifference price. Assuming initial wealth and the existence of a bank account paying a

continuous compounded interest rate r, the utility indifference price p depending on the

number of derivatives c is defined by

U(erT x) = E[U(erT (x− p(c)) + cg(ST ))],

which yields for exponential utility

p(c) = −1

γ
e−rT ln

(

E

[

e−γcg(ST )
])

. (4.1)

This is the fundamental pricing equation for exponential utility if one cannot hedge with

the underlying. Prices are generally non-linear in the quantity c and worse, might not

even exist for unbounded functions g and negative values of c, i.e. when the derivative is

sold by the agent. In fact, the expectation value does not exist for a call option if ST is

log-normally distributed as it is the case for an exponential Ornstein-Uhlenbeck process.

Hence all agents with exponential utility will find it too risky to sell call options on that
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underlying. As selling a put option has only a limited downside risk – in the worst case the

seller will have to pay the strike price K – it can be priced and is shown in the following

example.

Example 4.1.1

Consider an agent with exponential utility and γ = 1
10 . To illustrate the risk aversion

assume there is a choice of receiving either a guaranteed cash amount of x = 100 or x = d

with probability q and x = u with probability (1 − q). For d = 99 and u = 101 the

agent would be indifferent only if q ≈ 0.48, for d = 90 and u = 110 it will have to be

q ≈ 0.27 and for d = 0 and u = 200 even q ≈ 0.000045. To price an option we will have

to make further assumptions on the underlying price process (St), say it is an exponential

Ornstein-Uhlenbeck process with

St = S0 exp(Xt),

dXt = −αXt dt+ σ dWt,

and S0 = 100, α = 7, σ = 1.4. Assume further T is big enough for XT to have the stationary

distribution XT ∼ N (0, σ
2

2α). The price of a put option is based on Equation (4.1) and given

by

p(c) = −1

γ
ln

(∫ ∞

−∞
exp

(

−γc(K − S0 ex)+
)

fXT
(x) dx

)

,

with fXT
being the pdf of XT . The unit price p(c)/c for K = 100 is shown in Figure 4.1. It

is not a coincidence that the expected payoff E[(K − ST )+] is equal to the marginal price

p(c)/c, c→ 0.

Despite the difficulties with utility indifference pricing, not to mention the problem of

agreeing upon one particular utility function, there is a link to arbitrage pricing. As seen in

Figure 4.1 the marginal price coincides with the expected value of the payoff which is equal

to the price under the real world measure. This is a general result if the payoff function

is bounded. We make this plausible by simple linearisation of the utility function. The

indifference price p(c) is given by

U(x) = E[U(x− p(c) + e−rT cg(ST ))],

and for small c we linearise the utility function at x to obtain

U(x) = U(x) + U ′(x)
(

−p(c) + e−rT cE[g(ST )]
)

+ O(. . . ),

indicating that

p′(0) = lim
c→0

p(c)

c
= e−rT E[g(ST )].

Expectations are all taken under the real world probability measure.
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Figure 4.1: Utility indifference price of a put option. The price per option is plotted with
respect to the amount of options sold or bought. Exponential utility with γ = 1

10 and a
spot price process with log-normally distributed end value ST is assumed. All parameters
are given in Example 4.1.1.

4.1.2 Pricing and hedging with a correlated asset

If a correlated asset is available in the market which can be used to hedge the claim written

on the non-tradable or non-storable asset, the solution is not as obvious as in the previous

subsection. Let Pt and St be the traded and non-traded asset, respectively. Furthermore, let

Z
[θ]
t be the value of a self-financing portfolio consisting of Pt and a money market account,

where θt indicates the cash amount of the portfolio held in the asset Pt. One then defines

a value function as the maximum expected utility given initial wealth z, St = s and given

the agent posses c units of the derivative:

V (t, z, s, c) := sup
θ

E

[

Z
[θ]
T + cg(ST )|Zt = z, St = s

]

,

where the supremum is taken over all admissible and self financing trading strategies θ. It

is non-trivial to calculate the value function but stochastic optimal control theory yields an

expression for the optimal trading strategy θ∗ and a non-linear partial differential equation,

the Hamilton-Jacobi-Bellman (HJB) equation, which depends on the precise specification

of the dynamics of (St) and (Pt). Once the value function is known the utility indifference

price p is given by

V (t, z − p, s, c) = V (t, z, s, 0).
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For more details see [Henderson, 2002]. For the special case of exponential utility and the

dynamics

dSt = Stµ1 dt+ Stσ1 dWt, (not traded),

dPt = Ptµ2 dt+ Ptσ2 dBt, (traded),

dWt dBt = ρ dt,

it is shown that the optimal hedging strategy is to invest the money amount of µ2−r
σ2
2γ

e−r(T−t)

in the traded asset and the utility indifference prices is given by

p(t, s, c) = − e−rT

γ(1 − ρ2)
ln
(

EQ
[

e−cγ(1−ρ
2)g(ST ) |St = s

])

,

where Q is the minimal martingale measure of Föllmer and Schweizer making the discounted

process of (St) a martingale and leaving any orthogonal process of (Wt) unchanged.

For bounded payoff functions it also turns out that the marginal price is linked to the

discounted expected payoff under the minimal martingale measure Q:

p(t, s, c)

c
= e−rT EQ[g(ST )|St = s], (c→ 0).

This result is not specific to exponential utility and the particular choice of dynamics. For

a more general result see [Davis, 1997]. We henceforth focus on arbitrage pricing.

4.2 Arbitrage pricing and risk neutral formulation

In a market where the underlying cannot be used to replicate1 derivative products, arbitrage

arguments do not immediately lead to a unique price for derivatives. It is only when a

market becomes richer in the sense that a broad range of derivatives is liquidly traded

in addition to the underlying, that arbitrage theory may provide us with a unique price

for a particular derivative we want to sell in that market. The basic idea is to use the

traded options to replicate the product we want to sell. See [Björk, 2004, Chapter 15] for

a detailed description of arbitrage pricing in incomplete markets. In Appendix D we have

also given a short account of it. As it turns out, the market is free of arbitrage if there

exists an equivalent measure Q ∼ P so that the discounted price V of all traded derivatives

are martingales under Q, i.e.

Vt = e−r(T−t) EQ[VT |Ft].

As the underlying cannot be used to hedge and hence can be considered a non-tradable asset

in the sense of arbitrage pricing, the discounted value of the underlying is not necessarily a

1This is also the case in weather markets where the underlying might be the temperature on one place.
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martingale under Q. This implies that the forward curve F (t, T ) := EQ[ST |Ft] is not of the

simple shape of er(T−t) as it is the case in share or foreign exchange markets, for instance.

If such a measure Q does not exist then the market offers arbitrage opportunities which we

will generally assume not to be the case. If the measure Q is still not uniquely determined,

then the market is called incomplete and it is not possible to replicate any claim on the

underlying using the options traded in the market.

We consider the model of the previous section. Let (Ω,A,P) be a probability space and

(Ft)t∈R+ be a filtration generated by (Xt) and (Yt). Additionally, let f be a continuous

differentiable function, then the dynamics of the spot process is given by

St = exp(f(t) +Xt + Yt),

dXt = −αXt dt+ σ dWt,

dYt = −βYt− dt+ Jt dNt.

(4.2)

The processes (Wt), (Nt) and (Jt) are assumed to be mutually independent.

Measure changes in models with jumps of continuous sizes are subject of ongoing research.

[Henderson and Hobson, 2003] give a comprehensive overview of recent papers in the lit-

erature and compare option prices in a jump-diffusion model under different equivalent

martingale measures. The definition of the measure change is very general and involves

point processes and Poisson random measures. Here, we only consider a subset of equiva-

lent measures which leave the structure of the jump process unchanged, i.e. jumps will still

be generated by a Poisson process and an independent and stationary jump size distribution

under Q. The restriction we impose on the set of possible risk neutral measures might limit

the range of arbitrage free prices we will get for certain options. However, it is very com-

mon in the literature to restrict the set of possible risk neutral measures in order to obtain

a manageable risk neutral spot dynamics. [Merton, 1976] even leaves the jump dynamics

unchanged by arguing the jump risk is unpriced. We will later show that the subset of

martingale measures as defined below will be sufficient in the sense that a measure Q can

always be found consistent with an observed forward curve.

Define any equivalent measure Q by dQ = ΠT d P with the state price process (Πt)t∈[0,T ]

given by the sde

dΠt

Πt−
= −λγ(t) dt− ψ(Xt, t) dWt + γ(t) dNt, Π0 = 1.

We call the function ψ the market price of diffusion risk and γ > −1 the market price of

jump risk. For a more general version see [Henderson and Hobson, 2003, Section 3].
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Based on Girsanov’s theorem and the fact that Jt, Nt and Wt are mutually independent and

based on [Henderson and Hobson, 2003, Remark 3.3] it follows that the dynamics under Q

are given by

St = exp(f(t) +Xt + Yt),

dXt = (−αXt − ψ(Xt, t)σ) dt+ σ dWQ
t ,

dYt = −βYt− dt+ Jt dNQ
t ,

where WQ
t is a Q Brownian motion and NQ

t is a Poisson process under Q with intensity

λ(1 + γ(t)). In order not to leave the class of models considered in Chapter 3 we further

restrict the set of possible risk neutral measures by setting

ψ(x, t) =
α̂− α

σ
x− α̂

σ
µ(t), γ(t) =

λ̂

λ
− 1,

and so the dynamics become

dXt = α̂(µ(t) −Xt) dt+ σ dWQ
t , dYt = −βYt− dt+ Jt dNQ

t ,

where NQ
t has intensity λ̂. The mean reverting level µ(t) of the OU process (Xt) can be

expressed as an additional term of the seasonality, see Remark B.1.3, to obtain

St = exp(f(t) + f1(t) +Xt + Yt),

dXt = −α̂Xt dt+ σ dWQ
t ,

dYt = −βYt− dt+ Jt dNQ
t ,

where f1 solves the ordinary differential equation (ode) f ′1(t) + α̂f1(t) = µ(t).

Remark 4.2.1 (Risk neutral dynamics)

The risk neutral dynamics of Model 4.2 in an electricity market is given by

St = exp(f̂(t) +Xt + Yt),

dXt = −α̂Xt dt+ σ dWQ
t ,

dYt = −βYt− dt+ Ĵt dNQ
t ,

(4.3)

where NQ
t has intensity λ̂ under Q. The parameters α̂, λ̂, the function f̂ as well as the

jump size distribution Ĵ are all determined by the particular choice of measure Q. Only

the parameters σ and β remain unchanged by our measure transformation. Note, the drift2

of the process (Yt) under P could still be different from the drift under Q. This is because

the Poisson process is not a martingale and has a drift λ dt under P and λ̂ dt under Q.

Only because we specify our model in terms of the Poisson process and not its compensated

version, the term in front of dt remains unchanged by a change of measure.

2In a non-rigorous definition we could say the drift is the process less its martingale part.
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Corollary 4.2.2 (Seasonal function consistent with the forward curve)

Let t = 0 and F
[T ]
0 be the forward at time 0 maturing at time T , then the risk neutral

seasonality function is given by

f̂(T ) = lnF
[T ]
0 −X0 e−α̂T −Y0 e−βT −σ2

4α̂
(1 − e−2α̂T ) − λ̂

∫ T

0
ΦĴ

(

e−βs
)

− 1 ds.

Proof The forward price in an arbitrage free market is given by F
[T ]
0 = EQ[ST ]. Based on

the risk neutral dynamics (4.3) and the expectation value of ST given in Corollary 3.4.13

the result follows immediately. �

Remark 4.2.3

The market remains incomplete even with a complete and liquid forward market. The speed

of mean-reversion α̂, and all the jump parameters λ̂ and Ĵ remain undetermined. One way

of choosing a measure Q is to pick the one which is closest to P in some metrical sense.

Section 5.3 gives some ideas on how to find such an optimal Q and the implications for the

parameter α̂. Otherwise, if more options are liquidly traded in the market, more constraints

on the measure Q are imposed which might lead to a full determination of all risk neutral

parameters. In practice, however, where a liquid option market is still rare, a pragmatic

approach is to estimate all parameters from historical data but to calibrate the seasonality

function to the observed forward curve.

To simplify notation in this chapter we will assume that the risk neutral dynamics is given

by (4.2) but where parameters are calibrated in a consistent way to match observed market

prices, in particular we will assume that the model is consistent with the observed forward

curve.

4.3 Pricing path-independent options

The purpose of this section is to examine options with a general payoff g(ST ), i.e. only

depending on the value of the underlying at maturity T . The arbitrage-free value of the

option is given by

V = e−r(T−t) EQ[g(ST )|Ft],

and as (St) is not a Markov process in our model (4.2) – only the individual processes (Xt)

and (Yt) are Markov – the price depends on the entire history of the spot price process.

Assuming the mean-reverting and spike process are individually observable, the option price

then only depends on Xt and Yt and is given by

V (x, y, t) = e−r(T−t) EQ[g(ST )|Xt = x, Yt = y]. (4.4)



CHAPTER 4. OPTION PRICING 66

In practical situations it is fairly obvious when a spike has occurred and so we will assume

that both processes are observable. This slight inconsistency with reality will disappear

when considering forwards as the underlying process. As it turns out, the forward process

of a fixed maturity T is a Markov process (see Equation (4.8)) and hence prices of options

on forwards only depend on the initial value of the forward.

For the valuation of option prices we need to be able to calculate the expectation values

(4.4). Although we do not have an analytic expression for the probability density of ST ,

approximations developed in Section 3.4.3 can be used to obtain approximate pricing formu-

lae. For long time horizons T the distribution of ST turns out to be similar to a lognormal

distribution but with heavier tails. Without the presence of jumps, ST will be lognormal

and pricing formulae are given in Section D.3 and are of the same form as the Black-Scholes

equation.

Another method uses the complex valued moment generating function of ST and the Laplace

inversion to derive option prices. For an overview see [Cont and Tankov, 2004, Section

11.1.3]3 or the therein referred papers of [Carr and Madan, 1998] and [Lewis, 2001]. Even

[Heston, 1993] has already used this method implicitly to price call options in a stochastic

volatility model.

We describe two inversion methods below, one which can only be used to price call and put

option and the other one able to deal with general option payoffs.

4.3.1 Pricing call options

Assume the following notation

St = eZt ,

ΦZ(θ, t) = EQ[eθZt ], θ ∈ Θ ⊂ C.

Assume today is t = 0 and the option payoff is given by g(ST ) then the arbitrage free option

price is

V (x, y, 0) = e−rT EQ[g(eZT )|X0 = x, Y0 = y].

We recall a general result on how to obtain the distribution function from a characteristic

function, an extension of which will later be used to price options. See [Stuart and Ord, 1994,

Chapter 4] and [Williams, 1991, Chapter 16] for details.

3They describe the method in terms of a complex valued characteristic function and Fourier inversion,
but by allowing complex values the method can also be written in terms of Laplace transforms.
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Theorem 4.3.1 (Lévy’s Inversion Theorem)

Let Φ : Θ ⊂ C → R be the moment generating function of a random variable Z

Φ(θ) := E

[

eθZ
]

=

∫

R

eθx dFZ(x)

then the cumulative distribution FZ : R → [0, 1] is given by

FZ(x) =
1

2
− 1

π

∫ ∞

0

=
(

Φ(0 + iν) e−iνx
)

ν
dν.

Proof [Stuart and Ord, 1994, Equation 4.14]. �

Remark 4.3.2

The moment generating function at purely imaginary points is equal to the characteristic

function and therefore always exists.

This inversion formula can be generalised to truncated moment generating functions, see

also [Duffie et al., 2000, Proposition 2].

Proposition 4.3.3

Let Z be a random variable and its truncated moment generating function be defined by

Gν(x) := E
[

eνZ 1{Z≤x}
]

=

∫ x

−∞
eνy dFZ(y).

If the moment generating function Φ(ν + iθ) exists for some ν ∈ R and all θ ∈ R then

Gν(x) =
Φ(ν)

2
− 1

π

∫ ∞

0

=
(

Φ(ν + iθ) e−iθx
)

θ
dθ. (4.5)

Proof Proposition C.2.3. �

This proposition states that the truncated expectation of eνZ is given by some form of an

inverse Laplace transform of the moment generating function of Z over θ. We can use this

to price put options because we have

E[(K − ST )+] = K E[1ST≤K ] − E[ST1ST≤K ] = KG0(lnK) −G1(lnK),

and the price of a call option can be obtained by put-call parity.
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4.3.2 Pricing options with arbitrary payoff

We assume our model (4.2) with zero initial conditions X0 = 0 and Y0 = 0. Let Z̄T =

f(T ) + XT + YT given X0 = 0 and Y0 = 0 and ZT = f(T ) + XT + YT given X0 = x and

Y0 = y, as before

ST = exp(ZT ) = exp(c+ Z̄T ), c = e−αT x+ e−βT y.

Let the option payoff be given by g(ST ). The expected payoff can then be written as the

convolution of the payoff and the density function fZ̄T
:

E

[

g(ec+Z̄T )
]

=

∫

R

g(ec+x)fZ̄T
(x) dx

=

∫

R

h(c− x)f(x) dx,

with h(x) := g(ex) and f(x) = fZ̄T
(−x). In the Laplace transformed space a convolution

becomes a multiplication, so the idea is to Laplace transform in c, solve the expression in

the Laplace transformed space and back-transform.

Theorem 4.3.4

Let h : (0,∞) → R be such that its Laplace transform ĥ(θ) exists for <θ ∈ I1 and Z̄T be a

random variable possessing a probability density and having a moment generating Function

ΦZ̄T
(θ) defined for all <θ ∈ I2. Given I := I1 ∩ −I2 is non-empty

E[h(c+ Z̄T )] =
1

2πi
lim
R→∞

∫ γ+iR

γ−iR
ĥ(θ)ΦZ̄T

(−θ) e−θc dθ, ∀γ ∈ I. (4.6)

Proof Define

v(x) := E
[

h(x+ Z̄T )
]

,

v̂(θ) =

∫ ∞

−∞
eθx v(x) dx, θ ∈ C.

The function v can be written as a convolution of h and the density function f of X:

v(x) =

∫

R

h(x− y)f(y) dy, f(y) := fZ̄T
(−y).

Note the Laplace transform of f at θ is equal to ΦZ̄T
(−θ).

The convolution theorem guarantees existence of v̂(θ) if the Laplace transform of both

convolution terms exists and then it is equal to the product of their Laplace transforms:

v̂(θ) = ĥ(θ)ΦZ̄T
(−θ), ∀θ ∈ C : <(θ) ∈ I.
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Applying the Laplace inversion theorem obtains the desired result

v(x) =
1

2πi
lim
R→∞

∫ γ+iR

γ−iR
ĥ(θ)ΦZ̄T

(−θ) e−θx dθ.

�

Remark 4.3.5

For a call option payoff g(x) = (x − K)+, the Laplace transformed of h(x) = g(ex) =

(ex−K)+ is

ĥ(θ) =

∫ ∞

−∞
(ex−K)+ eθx dx

=

∫ ∞

lnK
(ex−K) eθx dx

=

∫ ∞

lnK
e(θ+1)x dx−K

∫ ∞

lnK
eθx dx

= − 1

θ + 1
e(θ+1) lnK +

K

θ
eθ lnK

= −K
θ+1

θ + 1
+
Kθ+1

θ

=
Kθ+1

θ(θ + 1)
, <θ < −1.

4.3.3 Pricing options on Forwards

For a forward contract at time t maturing at T we know the strike of a zero-cost forward is

given by

F
[T ]
t = EQ[ST |Ft].

The most common options on forwards are puts or calls maturing at the same time as the

underlying forward, i.e. the payoff is given by (F
[T ]
T −K)+ which is equivalent to (ST −K)+.

Therefore we can price these contracts based on the dynamics of the spot and using methods

developed in the previous sections. However, by analysing the dynamics of the forward curve

implied by the spot price model we will gain further insights and be able to relate the price

of an option to the Black-76 formula [Black, 1976], which is still widely used in practice.

Recall the result of Corollary 3.4.13:

F
[T ]
t = exp

(

f(T ) +Xt e
−α(T−t) +Yt e

−β(T−t) +
σ2

4α
(1 − e−2α(T−t)) + λ

∫ T−t

0
ΦJ(e

−βs) − 1 ds

)

.

(4.7)



CHAPTER 4. OPTION PRICING 70

We fix a maturity T and apply Itô’s formula to obtain the dynamics of the forward maturing

at T :

dF
[T ]
t

F
[T ]
t

= −λ
(

ΦJ(e
−β(T−t)) − 1

)

dt+ σ e−α(T−t) dW +
(

exp(Jt e
−β(T−t)) − 1

)

dNt. (4.8)

The forward is a martingale by definition, and so the drift term only compensates the jump

process. For large time to maturities T − t, a jump in the underlying process has only

very limited effect on the forward. More precisely, if the relative change in the underlying

is exp(Jt) − 1 the forward changes relatively by exp(Jt e
−β(T−t)) − 1. In addition to the

jump component the dynamics follows a deterministic volatility process starting with a low

volatility σ e−αT at t = 0 and ever increasing it approaches σ at maturity. Without the

jump component there are clear similarities with the Black-76 model.

For pricing purposes we need to find the distribution of F
[T ]
T in terms of its initial condition

F
[T ]
t where t is understood to be today. We have

lnF
[T ]
T = f(T ) +XT + YT ,

lnF
[T ]
t = f(T ) +Xt e

−α(T−t) +Yt e
−β(T−t) +

σ2

4α
(1 − e−2α(T−t)) + λ

∫ T−t

0
ΦJ(e

−βs) − 1 ds.

Subtracting the second equation from the first eliminates the seasonality component f(T ),

and using the relation

XT −Xt e
−α(T−t) = σ

∫ T

t
e−α(T−s) dWs,

YT − Yt e
−β(T−t) =

NT
∑

i=Nt

Jτi e−β(T−τi),

we finally get

lnF
[T ]
T = lnF

[T ]
t + σ

∫ T

t
e−α(T−s) dWs +

NT
∑

i=Nt

Jτi e−β(T−τi)

+
σ2

4α
(1 − e−2α(T−t)) + λ

∫ T−t

0
ΦJ(e

−βs) − 1 ds.

(4.9)

Without the jump component, F
[T ]
T would be log-normally distributed. Given a very high

mean-reversion rate β of the jump component we make a first approximation by assuming

F
[T ]
T is nearly log-normally distributed, which we can partly justify by the approximations

derived in Section 3.4.4. In particular Equation (3.13) says that the density of lnST − f(T )

is approximately a weighted sum of a normal density and the density of a random variable

related to the jump size distribution. It turns out that for standard market parameters and
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medium to long term maturities the weights are almost exclusively on the normal density.

Figure 3.14 shows the density of lnST − f(T ) = lnF
[T ]
T − f(T ). Hence, we expect a good fit

of option prices of at-the-money calls but due to the heavy tails of the jump size distribution

which we completely neglect in the approximation, we expect to underestimate prices of far

out of the money calls.

Based on the definition of a forward, F
[T ]
t is a martingale for a fixed maturity T and in

order to keep the same property in our approximation we set

lnF
[T ]
T ≈ lnF

[T ]
t + ξ, ξ ∼ N

(

−1

2
σ̂2(T − t), σ̂2(T − t)

)

,

and set σ̂2(T − t) := var[lnF
[T ]
T |Ft], i.e.

σ̂2(T − t) = var

[

σ

∫ T

t
e−α(T−s) dWs +

NT
∑

i=Nt

Jti e−β(T−ti)
]

=
σ2

2α
(1 − e−2α(T−t)) +

λ

2β
E[J2](1 − e−2β(T−t)).

Remark 4.3.6 (Term structure of implied volatility)

Comparing this result with the setting of Black-76 [Black, 1976] where dF = Fσ dW and

so FT = Ft exp(ξ) with ξ ∼ N
(

−1
2σ

2(T − t), σ2(T − t)
)

we conclude that σ̂ is the implied

Black-76 volatility and in a first approximation given by

σ̂2 ≈
σ2

2α(1 − e−2α(T−t)) + λ
2β E[J2](1 − e−2β(T−t))

T − t
, (4.10)

which is shown in Figure 4.2. It can be seen that the spike process has a much more

significant impact on the implied volatility for short maturities rather than for long term

maturities. As far as the price of an at the money call is concerned, the additional jump

risk adds an almost constant premium to the price to be payed without any jump risk.

Remark 4.3.7 (Implied volatility across strikes)

The approximation does not predict a change of implied volatility across strikes. However,

the jump risk introduces a skew as can be seen in Figure 4.2 where the exact solution based

on Section 4.3.1 has been used to calculate implied volatilities. The bigger the mean jump

size and hence the bigger E[J2], the more profound is the skew.

4.3.4 Pricing options on Forwards with a delivery period

As electricity is a flow variable, forwards always specify a delivery period. The results of

the previous section can therefore only be seen as an approximation to option prices on

forwards with short delivery periods, like one day. We only consider options on forwards
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Figure 4.2: Implied volatilities and prices. The left graph shows implied volatilities with
respect to time to maturity where approximation (4.10) is used. The three lines correspond
to no jumps (µJ = 0), small jumps (µJ = 0.4) and big jumps (µJ = 0.8). In the right graph
the corresponding prices of an at the money call are plotted. Parameters are r = ln(1.05),
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Figure 4.3: Implied volatilities across strikes and sample paths. The upper graph shows the
implied volatility for one maturity T = 0.2 based on the exact solution. The approximate
solution (4.10) yields 0.82 and 0.85 for the small and big jumps, respectively. Sample paths
of the model with the same parameters are drawn in the lower two graphs, where the left
path is generated with a low mean jump size (µJ = 0.4) and the right with a high mean
jump size (µJ = 0.8). All the other parameters are the same as in Figure 4.2.
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maturing at the beginning of the delivery period, i.e. the payoff is given by some function of

F
[T1,T2]
T1

at time T1. An option on such a forward is conceptually similar to an Asian option

in the Black-Scholes world. One method of pricing Asian options is to approximate the

distribution of the integral by a log-normal distribution and can be done by matching the

first two moments, see [Turnbull and Wakeman, 1991] for example. Once the parameters

of the approximate log-normal distribution have been determined, pricing options comes

down to pricing in the Black-Scholes or Black-76 setting.

Recalling the relation between the forward with and without a delivery period (2.1)

F
[T1,T2]
t =

∫ T2

T1

w(T ;T1, T2)F
[T ]
t dT,

the second moment of F
[T1,T2]
T1

is given by

EQ

[

(∫ T2

T1

w(T )F
[T ]
T1

)2

dT |Ft

]

=

∫ T2

T1

∫ T2

T1

w(T )w(T ∗) EQ
[

F
[T ]
T1
F

[T ∗]
T1

|Ft

]

dT dT ∗,

and the expectation of the product of two individual forwards EQ
[

F
[T ]
T1
F

[T ∗]
T1

|Ft

]

can be

derived using the solution of the forward (4.7) as follows:

lnF
[T ]
T1

= lnF
[T ]
t + e−α(T−T1) σ

∫ T1

t
e−α(T1−s) dWs + e−β(T−T1)

NT1
∑

i=Nt

Jτi e−β(T1−τi)

− σ2

4α
(e−2α(T−T1) − e−2α(T−t))

+ λ

∫ T−T1

0
ΦJ(e

−βs) − 1 ds− λ

∫ T−t

0
ΦJ(e

−βs) − 1 ds

= lnF
[T ]
t + e−α(T−T1) σ

∫ T1

t
e−α(T1−s) dWs + e−β(T−T1)

NT1
∑

i=Nt

Jτi e−β(T1−τi)

− σ2

4α
(e−2α(T−T1) − e−2α(T−t)) − λ

∫ T1−t

0
ΦJ(e

−β(T−T1) e−βs) − 1 ds,

and so

lnF
[T ]
T1

+ lnF
[T ∗]
T1

= lnF
[T ]
t + lnF

[T ∗]
t

+
(

e−α(T−T1) + e−α(T ∗−T1)
)

σ

∫ T1

t
e−α(T1−s) dWs

+
(

e−β(T−T1) + e−β(T ∗−T1)
)

NT1
∑

i=Nt

Jτi e−β(T1−τi)

− σ2

4α
(1 + e−2α(T ∗−T ))(e−2α(T−T1) − e−2α(T−t))

− ln ΦY (e−β(T−T1)) − ln ΦY (e−β(T ∗−T1)),
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which gives

EQ
[

F
[T ]
T1
F

[T ∗]
T1

|Ft

]

= EQ
[

exp
(

lnF
[T ]
T1

+ lnF
[T ∗]
T1

)

|Ft

]

= F
[T ]
t F

[T ∗]
t

ΦY (e−β(T−T1) + e−β(T ∗−T1))

ΦY (e−β(T−T1))ΦY (e−β(T ∗−T1))

exp

(

−σ2

4α
(1 + e−2α(T ∗−T ))(e−2α(T−T1) − e−2α(T−t))

)

exp

(

σ2

4α
(1 + e−α(T ∗−T ))2(e−2α(T−T1) − e−2α(T−t))

)

.

How well the moment matching procedure works is shown in Figure 4.4 where the density

of a forward F
[T1,T2]
T1

is compared to the density obtained by the approximation. The shapes

of both densities are similar but differences in values are clearly visible. As a result one

might not expect call option prices based on the approximate distribution to be very close

to the exact prices for all strikes K but still close enough to be useful. For an at-the-money

strike call option, prices for varying maturities are shown in Figures 4.5 and 4.6. As it turns

out, the approximations gives very good results for short delivery periods and is still within

a 5% range for delivery periods of one year.
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Note, any forward F
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delivers exactly 1 MWh over the delivery period [T1, T2].

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

pr
ic

e

duration T2-T1

Price of a call option, T1=1.0

approximation
montecarlo
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4.4 Pricing swing options

Swing contracts are a broad class of path dependent options allowing the holder to exercise

a certain right multiple times over a specified period but only one right at a time4 or per

time-interval like a day. Such a right could be the right to receive the payoff of a call option.

Other possibilities include the mixture of different payoff functions like calls and puts or

calls with different strikes. Another very common feature is to allow the holder to exercise

a real valued multiple of a call or put option at once, where the multiple is called volume.

This generally involves further restriction on the volume, like upper and lower bounds for

each right and for the sum of all trades.

Swing contracts can be seen as an insurance for the holder against excessive rises in electric-

ity prices. Assuming the prices generally revert to a long term mean, even a small number

N of exercise opportunities suffices to cover the main risks and hence make the premium

of the contract cheaper. Sometimes, swing contracts are bundled with forward contracts.

The forward contract then supplies the holder with a constant stream of energy to a fixed

pre-determined price. If the strike price of the call options of the swing contract is set to

the forward price, the swing contract will allow for flexibility in the volume the customer

receives for the fixed price. They can either “swing up” or “swing down” the volume of

energy and hence the name swing contract. One cannot assume that the holder always

exercises the contract in an optimal way to maximise expected profit but they might also

exercise according to their own internal energy demands.

Swing contracts have been around for much longer than academic papers on valuing them

based on arbitrage principles. It is only very recent that articles on numerical pricing

methods for swing options have appeared in the literature. We can identify a few main

approaches all based on dynamic programming principles. A Monte-Carlo method and

ideas of duality theory are utilised in [Meinshausen and Hambly, 2004] to derive lower and

upper bounds for swing option prices. The main advantages of the method being their

flexibility as it can be easily adapted to any stochastic model of the underlying and its

ability to produce confidence intervals of the price. Monte-Carlo techniques are also used

in [Ibanez, 2004] and [Carmona and Touzi, 2004], where the latter uses the theory of the

Snell envelope to determine the optimal exercise boundaries and also utilises the Malliavin

calculus. A constructive solution to the perpetual swing case for exponential Brownian

motion is also given in [Carmona and Touzi, 2004]. Unfortunately, these methods only

work for the most basic versions of swing contracts where at each time only one unit of an

option can be exercised.

4This will also involve a “refraction period” in which no further right can be exercised.
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More general swing contracts with a variable volume per exercise and an overall constrained

can be prices with a tree based method introduced in [Jaillet et al., 2004].

In all the above papers a discrete time model for the underlying is used where one time step

corresponds to the time frame in which no more than one right can be exercised, i.e. one day

in most of the traded contracts. A special case where the number of exercise opportunities is

equal to the number of exercise dates is considered in [Howison and Rasmussen, 2002] and

a continuous optimal exercise strategy derived which yields a partial integro-differential

equation for the option price.

Our method is based on the tree approach of [Jaillet et al., 2004], but instead of using a

trinomial tree for the spot price we account for the possibility of the spot price jumping from

any value to any other and hence obtain a grid rather than a tree. Besides this modification

our approach is identical to the one described in [Jaillet et al., 2004]. To generate the grid

we will make use of approximations to the conditional density as given in Section 3.4.2.

Although the approximations are not essential for the method to work as we could also use

the moment generating function to infer conditional densities, it speeds up the generation

of the grid considerably.

4.4.1 The grid approach

The tree method of [Jaillet et al., 2004] requires a discrete time model of the underlying.

This is due to the fact that their swing contracts allow the holder to exercise at most

one option within a specified time interval, say a day, and this is best modelled if the

underlying process has the same time discretisation. Assuming (St) is some continuous

stochastic process for the spot price we obtain a discrete model by observing it on discrete

points in time only, i.e.

St0 , St1 , St2 , . . . , Stm ,

with t0 = 0, ti+1 = ti + ∆t, tm = T and ∆t = 1
365 , indicating we can exercise on a daily

basis.

Let the maturity date T be fixed and the payoff at time t for simplicity5 be given by

(St −K)+ for some strike price K and we assume it is only allowed to exercise one unit of

the underlying at once. Let V (n, s, t) denote the price of such a swing option at time t and

spot price s which has n exercise rights left. The general pricing principle is then based on

the following equation

V (n, s, t) = max

{

e−r∆t EQ [V (n, St+∆t, t+ ∆t)|St = s] ,

e−r∆t EQ [V (n− 1, St+∆t, t+ ∆t)|St = s] + (s−K)+

}

, (4.11)

5We could assume any general payoff function.
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which basically says, todays value is the maximum of the expected value of the same option

tomorrow and the expected value of the same option but with one less exercise opportunity

plus the payoff of the option. Given we know the value of all swing options of tomorrow,

i.e. we know V (k, s, t+ ∆t) ∀s, k, then we can express the conditional expectations as

EQ [V (n, St+∆t, t+ ∆t)|St = s] =

∫ ∞

−∞
V (n, x, t+ ∆t)fS(x; s) dx,

where fS(x; s) is the density of St+∆t given St = s. With the final condition known to

be V (n, s, T ) = 0, ∀n, s and boundary condition V (0, s, t) = 0, ∀s, t, the method works

backward in time. Discretising the spot variable we approximate

EQ [V (n, St+∆t, t+ ∆t)|St = si] ≈
∑

j

V (n, sj , t+ ∆t)fS(sj ; si)∆sj .

This is only one possible approximation, others might be to use higher order integration

rules or using only a few grid points in the sum based on the fact that fS(x; s) → 0 for

|s− x| big. For a trinomial tree one only uses three grid points, i.e.

EQ [V (n, St+∆t, t+ ∆t)|St = si] ≈
1
∑

j=−1

V (n, si+j , t+ ∆t)pi,i+j ,

pi,j being the probability of going from node i to node j. However, such a tree approach

is not fully suited to our case for two reasons. First, the time step size is determined

by the shortest time between two possible exercise dates, which is mainly one day for

swing contracts. This limits the accuracy of the algorithm as a refinement of the grid

in spot direction will not improve the result. Second, in the presence of jumps, a three

point approximation for the conditional density is insufficient due to the heavy tails in the

distribution. As a result, we keep our method general and say

EQ [V (n, St+∆t, t+ ∆t)|St = si] ≈
∑

j

V (n, sj , t+ ∆t)pi,j ,

where pi,j in some ways resembles the density fS(sj ; si)∆sj but does not have to be the

same in order to accommodate higher order integration rules and boundary approximations.

With the notation of V n
i,k := V (n, si, tk) we can then write the method as

V n
i,k = max







e−r∆t
∑

j

V n
j,k+1pi,j , e−r∆t

∑

j

V n−1
j,k+1pi,j + (si −K)+







,

V 0
i,k = 0,

V n
i,m = 0.

(4.12)

We have not performed a sufficient analysis of different integration methods and non-uniform

grids to suggest an optimal method but we can state that the Gaussian quadrature rule as
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an integration method and the use of a non-uniform grid improves the result considerably.

We use a three point Gaussian quadrature rule, defined by

∫ 1

−1
f(x) dx ≈

1
∑

i=−1

wif(xi),

with x±1 = ±
√

3/5, x0 = 0, w±1 = 5/9 and w0 = 8/9. By linear transformation we then

get
∫ b

a
f(x) dx ≈ b− a

2

1
∑

i=−1

wif

(

b− a

2
xi +

a+ b

2

)

.

The integration intervals are generated by the method described in Section D.3.1 with

a concentration of grid points around zero6 and with a 2.5 fold intensity of grid points

compared to a uniform grid with the same number of grid points. See Figure D.3 for an

illustration.

4.4.2 Comparison of algorithms

We compare the accuracy of our algorithm with results of [Meinshausen and Hambly, 2004]

as they are able to calculate upper and lower price bounds based on a Monte-Carlo method

[Longstaff and Schwartz, 2001] and duality ideas [Rogers, 2002]. The model they consider

is a discrete version of an exponential Ornstein-Uhlenbeck process, which is a special case

of our Model (3.3) without the presence of any spikes and no seasonality, i.e.

dXt = −αXt + σ dWt,

St = exp(Xt).

We observe (St) on discrete points in time, only. To compare our results with Table 4.2 of

[Meinshausen and Hambly, 2004], we need to match their discrete model with our continu-

ous. They assume a discrete model of the form

X̃t+1 = (1 − k̃)X̃t + σ̃ξt, ξ ∼ N (0, 1),

with k̃ = 0.9, σ̃ = 0.5 and X̃0 = 0. One time-step in their paper corresponds to a time-step

of ∆t = 1
365 in our context, so

X̃t+∆t ∼ N
(

(1 − k̃)X̃t, σ̃
2
)

.

Our continuous process dXt = −αXt dt+ σ dWt has the conditional distribution

Xt+∆t ∼ N
(

e−α∆tXt,
σ2

2α
(1 − e−2α∆t)

)

.

6This is because in the numerical examples we calculate the initial conditions are generally X0 = 0 and
Y0 = 0.
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Figure 4.7: Value of swing contracts with 1–100 exercise rights over 1000 days. The Monte-
Carlo bounds are based on [Meinshausen and Hambly, 2004], Table 4.2. We use 42 grid
points in spot direction and obtain a result for all options within 2 seconds on an Intel
Pentium 4 with 3.4GHz. The grid is sketched in the picture below where each of the 14
intervals indicated by red lines contain three grid points in accordance with the Gaussian
quadrature rule.

In order to make both models equivalent, means and variances need to be the same and so

α =
ln(1 − k̃)

∆t
,

σ2 =
2α

1 − e−2α∆t
σ̃2,

and hence we get σ ≈ 20.60 and α ≈ 840.4.

A swing option contract with 1000 exercise days and up to 100 exercise opportunities is

considered in [Meinshausen and Hambly, 2004] with a strike of zero (K = 0). We choose

parameters of our grid method so that the result is accurate enough to fall within the

Monte-Carlo bounds of [Meinshausen and Hambly, 2004]. As it turns out 42 grid points in

X direction with a slight grid point concentration7 at zero suffice. An important advantage

of this method is its speed efficiency of one-dimensional problems like this. The calculation

of all swing option prices with 1–100 exercise opportunities only takes two seconds on an

Intel Pentium 4 with 3.4GHz. The result is shown in Figure 4.7.

72.5 as dense at zero as in a uniform grid.
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4.4.3 Numerical results

We now turn to the model of interest (4.2) which exhibits spikes. Assume that the mean-

reversion process (Xt) and the spike process (Yt) are individually observable and so the value

function V of a swing option depends on both variables and the general pricing principle

(4.11) becomes

V (n, x, y, t) = max

{

e−r∆t EQ [V (n,Xt+∆t, Yt+∆t, t+ ∆t)|Xt = x, Yt = y] ,

e−r∆t EQ [V (n− 1, Xt+∆t, Yt+∆t, t+ ∆t)|Xt = x, Yt = y] + (ef(t)+x+y −K)+.

We discretise the spacial variables by generating a grid in x and y direction as previously

described in Section 4.4.1. In order to calculate conditional expectations we need to define

transitional probabilities. Given one starts at node (Xt, Yt) = (xi, yj) the probability to

arrive at node (Xt+∆t, Yt+∆t) = (xk, yl) is approximately given by

pi,j,k,l ≈ fXt+∆t|Xt=xi
(xk)fYt+∆t|Yt=yi

(yl)∆x∆y,

because Xt and Yt are independent. We use a slightly more sophisticated approximation

by applying a 3-point Gaussian integration rule within each interval ∆x and ∆y. The

conditional density of the mean-reverting process (Xt) is known as Xt+∆t given Xt = x

is normally distributed with N (x e−α∆t, σ
2

2α(1 − e−2α∆t)), see (B.5). As we do not have a

closed form expression for the density of the spike process we use approximations developed

in Section 3.4.1. For an exponential jump size distribution J ∼ Exp(1/µJ) for example we

use approximation (3.9) for the spike process at time t given zero initial conditions:

fỸt
(x) =

1

Γ(λβ )µ
λ
β

J

e
− x

µJ − e
−x eβt

µJ

x
1−λ

β

, x > 0,

P (Ỹt = 0) = e−λt,

and so the conditional density can be approximated by

fYt+∆t|Yt=y(x) ≈ fỸ∆t
(x− y e−β∆t).

The introduction of a second space dimension increases the complexity of the algorithm

considerably, essentially by a factor proportional to the square of the number of grid points

in the y-direction. To price the swing contract shown in Figure 4.8 which has 365 exercise

dates and up to 100 exercise opportunities, our C++ implementation requires about 10

minutes to complete the calculation on an Intel P4, 3.4GHz, and for a grid of 120 × 60

points in x and y direction, respectively. The same computation but with no spikes and a

grid of 120 × 1 points only takes about one second.
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Figure 4.8: Value of a one year swing option per exercise right. Market parameters of the
underlying are as before, see Table 3.1, i.e. α = 7, β = 200, σ = 1.4, λ = 4, J ∼ Exp(1/µJ)
with µJ = 0.4, f(t) = 0, r = 0, and initial conditions X0 = 0 and Y0 = 0. The swing
contract delivers over a time period of one year T ∈ [0, 1] with up to 100 call rights and a
strike price of K = 1, where a right can be exercised on any day. As a comparison the price
of the same swing option is plotted but where the underlying does not exhibit spikes, i.e.
λ = 0.

Based on Figure 4.8 we make two observations. First, the price per exercise right decreases

with the number of exercise rights. This is the correct qualitative behaviour one would

expect because n swing options each with one exercise right8 only, offer more flexibility

than one swing option with n exercise rights.9 Second, the premium added due to the spike

risk is much more profound for options with small numbers of exercise rights than for large

one. This is also intuitively clear, as an option with say 100 exercise rights will mainly be

used against high prices caused by the diffusive part and only a very few against spiky price

explosions.

In Figure 4.9 we show how sensitive swing option prices are to changes in market param-

eters. There we consider a swing option with a duration of 60 days and up to 20 exercise

opportunities. In each graph we change one parameter by 20% up and down. The most

significant change is caused by a change in the volatility parameter σ. Note, the longterm

variance of the mean-reverting process (Xt) is σ2

2α and we expect some direct relationship

between the long-term variance and the option price. Hence, a change in the mean-reversion

parameter α is inversely proportional to the price and quantitatively changes the price less

than the volatility σ. The mean-reversion parameter β of the spike process has a similar ef-

8This is actually an American option.
9The rights of a swing option can only be exercised one at a time.
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Figure 4.9: Sensitivity of swing option prices with respect to model parameters. A swing
option with 60 exercise dates and up to 20 rights is considered, where the red curve is based
on the parameters of Figure 4.8. In each graph one market parameter is shifted up by 20%
(green line) and down by 20% (blue line). We always plot the option price divided by the
number of exercise rights.
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fect on the option price as α has, but where the influence slightly decreases with the number

of options. This is consistent with previous observations of the impact of jumps on option

prices as seen in Figure 4.8. This effect is much more clearly visible for the other jump

parameters λ and µJ which have the greatest impact on options with only a few exercise

rights. For one exercise right, a 20% change in the jump size µJ has an even greater effect

on the price than a 20% change in volatility σ. A possible explanation is that we deal with

very heavy tailed jump size distributions.

4.4.4 Dimension reduction

In practical situations, the computational time for pricing options is of crucial importance.

It is unlikely that a trader will be happy to wait minutes to get values for an option,

especially if it is of a very basic structure as the ones considered here.

The computational time of the grid algorithm is proportional to the square of the number

of grid points and so a reduction of grid points will cause a significant improvement in the

execution time. Here we document our first attempts to reduce the dimensionality of the

problem in order to considerably reduce the number of grid points. Some of the assumptions

we make on the way turn out to be quite vague, though intuitive, but as a consequence

we cannot necessarily expect the method to produce the right results. It is still hoped

that a refinement of the method could be of practical use under a certain range of market

parameters. The reduction in computational time is considerable.

The general idea is to use an approximation of the conditional density of St+∆t given Xt

and Yt as derived in Section 3.4.3, in particular see Remark 3.4.18. However, in order to

make the problem one-dimensional we need to express St+∆t in terms of St and this is

where the main difficulty lies. We know the process St = exp(f(t)+Xt+Yt) is not Markov,

despite (Xt) and (Yt) being Markov processes, and hence the distribution of St+∆t not only

depends on St but also on the entire history (Sτ )τ∈[0,t], given Xt and Yt are not individually

observable. Here we make our intuitive assumption and say if we observe St = s then we

know Xt +Yt = c with c := ln s− f(t) and then we simply assume that Xt and Yt are given

by their conditional expectations Xt = c1 and Yt = c2 with

c1 = EQ[X̄|X̄ + Ȳ = c], c2 = EQ[Ȳ |X̄ + Ȳ = c] = c− c1,

where X̄ and Ȳ are the respective stationary distributions. Numerical simulations appear

to indicate that this approach produces correct conditional densities for small values of c

but rather poor for very big values, see Figure 3.19.



CHAPTER 4. OPTION PRICING 85

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  2  4  6  8  10  12  14  16  18  20

va
lu

e/
rig

ht
s

exercise rights

Value of swing contracts

two dimensional
dim reduction

dim reduction, x_0=E[X|X+J=c]
no spikes

Figure 4.10: Pricing a swing option using our dimension reduction approach. The market
parameters as well as the swing option are identical to the those of Figure 4.9. The red
line indicates the reference price obtained by the two-dimensional method of the previous
section. The prices obtained by our reduced method, indicated by the green line, are
between 10%-20% apart from the reference price. The sensitivity of the method towards a
different choice of values for Xt and Yt given Xt + Yt = c is indicated by the purple line.

We define the method by specifying the conditional densities:

fXt+∆t+Yt+∆t|Xt+Yt=c(x) := fXt+∆t+Yt+∆t|Xt=0,Yt=0(x− c1 e−α∆t−c2 e−β∆t),

fXt+∆t+Yt+∆t|Xt=0,Yt=0(x) := e−λ∆t fXt+∆t|Xt=0(x) + (1 − e−λ∆t)fXt+∆t+J |Xt=0(x),

c1 := EQ[X̄|X̄ + Ȳ = c], c2 := c− c1.

Numerical simulations show that the method produces qualitatively correct but quantita-

tively inaccurate results as can be seen in Figure 4.10. As it turns out, one of the main

problems this method faces is its sensitivity to the particular choice of values c1 and c2

given we know Xt + Yt = c. Using a very poor approximation to the conditional expecta-

tion EQ[X̄|X̄ + Ȳ = c] like the one plotted in Figure 3.15 results in completely different

values – prices which are by far smaller than the cost of the same options without the

premium for the spike risk. This is also intuitively clear as this choice overestimates the

relative size of the spike c2 and underestimates the diffusion part c1 and as c2 reverts with

a high rate β back to zero, it would appear as if the model was mainly driven by the high

rate β and not α.

This sensitivity and the fact that we only know approximations to the conditional expec-

tation EQ[X̄|X̄ + Ȳ = c], see Figure 3.18, might partially explain the errors we observe

in the result. Another source of errors might come from the approximate distribution of
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Figure 4.11: Valuation of a swing option with ten exercise opportunities per day. The
option is the same as in Figure 4.10 but we leave the number of exercise opportunities at
60 and so the duration of the contract becomes 6 instead of 60 days.

Xt+∆t + Yt+∆t given Xt and Yt which is only valid for very small ∆t. Figure 4.11 shows

that if the time-step size is reduced to one tenth of a day, the method works much better

and errors are generally less than 6% of the reference value. Other situations where the

one-dimensional method works also fairly well are those when the mean-reversion rate α

gets close to the spike mean-reversion rate β and when the jump intensity λ is close to zero.

4.4.5 General swing contracts

Swing contracts considered so far were of the simplest form. We will now extend it and

allow to exercise a certain volume per exercise right and impose overall volume constraints.

Assume the payoff per right is given by g(St, t) if exercised at time t, as an example we

keep in mind a fraction of a call option payoff g(St, t) = γ(St−K)+. Each time an exercise

right is executed we can decide how many integer units u ∈ {umin, umin + 1, . . . , umax} of

the option g to exercise and so the payoff will be ug(St, t). The overall number of units

will be limited by Umax and we might impose a penalty if not at least Umin units were

exercised over the duration of the contract. Let the value of such a swing contract be given

by V (n, u, s, t) if n ∈ N0 exercise rights and u ∈ N0 units are left and given the price of the
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underlying is St = s, then the dynamic optimisation problem becomes

V (n, u, s, t) = max

{

e−r∆t EQ [V (n, u, St+∆t, t+ ∆t)|St = s] ,

e−r∆t EQ [V (n− 1, u− k, St+∆t, t+ ∆t)|St = s] + kg(s, t) : umin ≤ k ≤ umax

V (0, u, s, t) = 0, V (n, 0, s, t) = 0,

V (n, u, s, T ) = 0, if u ≤ Umax − Umin, otherwise V (n, u, s, T ) = −penalty.

This is a generalised version of (4.11) and the additional dimension in the volume u increases

the complexity of the algorithm roughly in the order of Umax.

4.5 PIDE formulation

In order to derive the partial-integro-differential equation (PIDE) the value function of

a derivative has to fulfil, we use the ideas of the Feynman-Kac theorem, which states

equivalence between expectation values and PIDEs.

Let the dynamics of the spot price in the risk-neutral probability measure Q be given by

(4.2). We rewrite the equations to express the seasonal function f as a time-dependent

mean reversion level of the process (Xt) and according to Remark B.1.3 we obtain

St = exp(Xt + Yt),

dXt = α(µ(t) −Xt) dt+ σ dW,

dYt = −βYt− dt+ Jt dNt,

µ(t) := f(t) +
f ′(t)
α

.

The price of a contingent claim with payoff g(ST ) at maturity T in an arbitrage-free market

is

V (x, y, t) = e−r(T−t) EQ[g(ST )|Xt = x, Yt = y],

and hence e−rt V (Xt, Yt, t) is a martingale under the filtration created by (Xt) and (Yt).

From Itô’s formula it follows that

d(e−rt V (Xt, Yt, t)) = e−rt(−rV dt+ dV ),

with

dV (Xt, Yt, t) =

(

∂V

∂t
+ α(µ(t) −Xt)

∂V

∂x
− βYt

∂V

∂y
+
σ2

2

∂2V

∂x2

)

dt

+ σ
∂V

∂x
dWt + (V (Xt, Yt + Jt, t) − V (Xt, Yt, t)) dNt.

(4.13)
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The process e−rt V is a martingale if its drift component minus the compensation of the

jump component is zero. The compensation of the jump process of V according to Remark

C.1.1 is given by

−λ
∫ t

0
E [V (Xt, Yt + Jt, t) − V (Xt, Yt, t)|Xt, Yt] dt.

We finally conclude that e−rt V is a martingale if the following equation is satisfied:

∂V

∂t
+
σ2

2

∂2V

∂x2
+ α(µ(t) − x)

∂V

∂x
− βy

∂V

∂y
+ λE[V (x, y + J, t) − V (x, y, t)] = rV.

With a given density function fJ of the jump size, the expectation value can be rewritten

and we obtain the integro-differential equation every value function for a contingent claim

with payoff g(ST ) has to satisfy:

∂V

∂t
+
σ2

2

∂2V

∂x2
+α(µ(t)−x)∂V

∂x
−βy∂V

∂y
+λ

∫

R
(V (x, y+z, t)−V (x, y, t))fJ(z)dz = rV, (4.14)

subject to the terminal condition V (x, y, T ) = g(ex+y).

4.6 Hedging contingent claims

As it is not possible to store electricity, the only way to hedge the risk-exposure of a

derivative is to use another derivative. However, it will not be possible to totally eliminate

the risk because the model allows for jumps with random sizes. To reduce the risk one

could use a hedge minimising the variance of the hedged portfolio or simply hedge the

diffusive risk.10 We illustrate the latter strategy as it is consistent with the particular

pricing measure, where expectations over the jumps are the same as under the real world

measure.11

Let V (x, y, t) be the value of an option, to be hedged with another option maturing at the

same time with value U(x, y, t). We consider the self financing portfolio αMt + δUt and

require its diffusive part to be the same as that of V (Xt, Yt, t). As it is self-financing, the

change in the portfolio-value is α dMt + δ dUt. The diffusive parts are, according to (4.13),

given by δ ∂U∂x and δ ∂V∂x for the portfolio and the option V , respectively. The hedging strategy

is therefore

δ =
∂V

∂x

/

∂U

∂x
.

10Terms in front of the Brownian motion in the sde.
11The jump risk is said to be not priced in.
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To illustrate this hedging strategy, we choose a forward contract with exercise price K as

the hedge U . For obvious arbitrage reasons the value has to be

U(x, y, t) = (F (t, T, x, y) −K) e−r(T−t),

where F (t, T, x, y) := EQ[ST |Xt = x, Yt = y] is the forward price. It follows from Corollary

3.4.13 that ∂F
∂x = e−α(T−t) F and hence ∂U

∂x = e−α(T−t) e−r(T−t) F . For the case where K = 0

this simplifies and we obtain the hedging strategy

δ =
eα(T−t)

U

∂V

∂x
,

i.e. the amount of money invested in the hedge is eα(T−t) ∂V
∂x .

We also note that the risks involved in issuing an option also very much depend on whether

the issuer actually possesses the ability to produce electricity for some fixed price p, i.e.

whether the issuer owns a power plant. Assume a bank sells a call option paying (ST −K)+

at maturity T . We expect ST to have a heavy tailed distribution due to the spike risk and

so the bank faces the potential risk of high losses if it does not employ an efficient hedging

strategy. However, if it is able to supply its own electricity at a fixed cost p it will be able to

sell it for ST in the market and so its profit and loss would be −(ST−K)++(ST−p)+ = K−p
for large ST . In that case the bank is on a safe side even without using an appropriate

hedging strategy which in turn relies on model assumptions.



Chapter 5

Equivalent martingale measures

In an arbitrage-free market the price of a derivative is given as the discounted expected

payoff with the expectation taken under an equivalent martingale measure Q. In incom-

plete markets where derivatives cannot be perfectly replicated there is no unique equivalent

martingale measure and hence no unique arbitrage-free price. It is the intention of this

chapter to give further guidance on which particular measure to pick and why. For stochas-

tic volatility models the theory is quite well established and therefore presented in Section

5.2. This is followed by our first attempts to examine optimal martingale measures in the

setting of a simple incomplete electricity market.

5.1 Introduction

If a unique martingale measure Q cannot be found, one idea of choosing a particular one

is to look for the measure Q∗ which is closest to the real world measure P within the set of

all equivalent martingale measures M.

We define “closeness” as some property of the FT measurable Radon-Nikodým derivative

Π defined by dQ = Π d P. A very well studied class of optimal pricing measures in the

literature are the q-optimal measures minimising the q-th moment of the Radon-Nikodým

derivative. For q > 1 we say

E

[(

dQ

d P

)q]

→ min, Q ∈ M.

The definition can be extended to make sense for all q ∈ R.

Definition 5.1.1

Let Π be the Radon-Nikodým derivative so that dQ = Π d P then define for q ∈ R \ {0, 1}

Hq(P,Q) :=

{

E

[

q
q−1Πq

]

if Q � P

∞ otherwise,

90
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and for q ∈ {0, 1} define

Hq(P,Q) =

{

E
[

(−1)1+q Πq ln Π
]

if Q � P

∞ otherwise.

Any measure Q ∈ M minimising Hq(P,Q) is then called a q-optimal measure. For q = 0

the optimal measure is also called minimal reverse entropy measure, for p = 1 it is called

minimal relative entropy measure and for q = 2 we have the variance optimal measure.

The importance of q-optimal martingale measures is reinforced by the fact that there are

strong links with utility indifference pricing. We only give a short sketch of the links, for a

more detailed discussion see [Monoyios, 2006, Section 2.2] and [Davis, 1997]. Assume zero

interest and let U be a utility function, then we define the maximal expected utility given

initial wealth z by

u(z) := sup
π∈A

E[U(ZπT )|Z0 = z], (5.1)

where Zπt is the process of a self financing portfolio and A is the set of all admissible

strategies. If the supremum is obtained by an optimal strategy with final value Z∗
T , one can

show that under suitable smoothness conditions the marginal utility price p̂ of a contingent

claim B at time T is given by

p̂(z) =
E[U ′(Z∗

T )B|Z0 = z]

u′(z)
. (5.2)

To get further insights one introduces the dual formulation to (5.1) by

v(η) := inf
Q∈M

E

[

V

(

η
dQ

d P

)]

, with V (η) := sup
x

(U(x) − xη), η > 0, (5.3)

where M is the set of all equivalent martingale measures. One can show that v(η) =

supx(u(x) − xη) and furthermore if Q∗ is the optimal martingale measure of (5.3) then

U ′(Z∗
T ) = u′(z)

dQ∗

d P
,

which is fundamental as it allows us to rewrite (5.2) to obtain the simple pricing formula

for marginal utility prices

p̂(z) = E

[

B
dQ∗

d P
|Z0 = z

]

= EQ∗

[B|Z0 = z],

i.e. the marginal utility price of a claim is given by the expected value of the claim under the

equivalent martingale measure which minimises the dual problem (5.3). For power utility

U(x) = xγ/γ we obtain V (η) = −ηq/q with q = −γ/(1 − γ), γ < 1, γ 6= 0, and hence the

optimal measure Q∗ minimises

inf
Q∈M

E

[

−1

q

(

dQ

d P

)q]

,
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and therefore is a q-optimal measure for q ∈ (0, 1). On the other hand, exponential utility,

U(x) = − e−αx, V (η) = η/α(ln(η/α) − 1), leads to the relative entropy measure (q = 1)

minimising

inf
Q∈M

E

[

dQ

d P
ln

(

dQ

d P

)]

.

See also [Delbaen et al., 2002] for a more detailed account. The case q = 0 corresponds to

logarithmic utility. Furthermore, the variance optimal measure q = 2 is related to mean-

variance hedging, see [Föllmer and Sondermann, 1986] and [Duffie and Richardson, 1991].

5.2 Pricing measures in a stochastic volatility models

In the case of stochastic volatility models, q-optimal measures are quite well understood

and have been studied extensively for some particular choices of q as well as in general, see

[Hobson, 2004]. In this section we state the main results of [Hobson, 2004], compare option

prices with respect to q by deriving analytical ordering results as well as by numerical

calculations. This has been part of collaborative research with Vicky Henderson, David

Hobson and Sam Howison published in [Henderson et al., 2005a].

We assume the class of stochastic volatility models in a zero interest rate world is given by

dSt
St

= Ytλ(St, Yt, t) dt+ Yt dBt, dYt = a(St, Yt, t) dt+ b(St, Yt, t) dWt,

where B and W are correlated Brownian motions with coefficient ρ. Introducing a B-

independent Brownian motion Z we can rewrite Wt = ρBt+ ρ̄Zt with ρ̄ :=
√

1 − ρ2. Fixing

a maturity T , then an equivalent martingale measure Q making S into a martingale can be

represented by

dQ = ΠT d P,
dΠt

Πt
= −λ(St, Yt, t) dBt − ψ(St, Yt, t) dZt, Π0 = 1,

where ψ is a function satisfying certain regularity conditions. If it turns out to be convenient

we might use the abbreviation ψt for ψ(St, Yt, t), the same applies for λt, at and bt. The

solution of ΠT is given by the Doléans exponential E

ΠT = E(−λB − ψZ)T = exp

(

−
∫ T

0

1

2
(λ2
t + ψ2

t ) dt−
∫ T

0
λt dBt −

∫ T

0
ψt dZt

)

.

Based on Girsanov’s Theorem, the processes BQ and ZQ are independent Brownian motions

under Q if defined by

dBQ
t = dBt + λt dt, dZQ

t = dZt + ψt dt,
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and so the dynamics of the underlying process under Q is

dSt
St

= 0 dt+ Yt dBQ
t , dYt = (at − ρλtbt − ρ̄ψtbt) dt+ bt dWQ

t ,

with dWQ
t = ρ dBQ

t + ρ̄ dZQ
t .

Hobson shows that in the special case of λ being a function of t only, or being adapted to

the filtration generated by B, all q-optimal measures coincide with the minimal martingale

measure which corresponds to ψt = 0. A more difficult problem arises if we allow all

parameters of the dynamics to be Y dependent, i.e. assume

dSt
St

= Ytλ(Yt, t) dt+ Yt dBt, dYt = a(Yt, t) dt+ b(Yt, t) dWt.

Hobson then shows that the q-optimal measure can be obtained by solving a partial differ-

ential equation (pde):

ψ(y, t) = ρ̄
∂f

∂y
(y, t)b(y, t),

∂f

∂t
= −1

2
b2
∂2f

∂y2
+ (qρbλ− a)

∂f

∂y
+

1

2
Rb2

(

∂f

∂y

)2

− q

2
λ2,

R = 1 − qρ2.

(5.4)

In general one might not be able to solve this non-linear pde analytically. However, it is pos-

sible to prove certain properties of ψ which will be useful to compare prices under different

q-optimal measures. It is one of the main theorems of [Henderson et al., 2005a] which shows

that ψ(y, t) ≥ 0 if qλ(y, t)2 is non-decreasing in y and ψ(y, t) ≤ 0 if qλ(y, t)2 is non-increasing

in y. The case ψ(y, t) = 0 corresponds to the minimal martingale measure and since the

main ordering theorem says option prices are decreasing in the market price of volatility

risk ψ, we can now compare prices under the q-optimal measures with prices under the

minimal martingale measure. The following theorem is based on [Henderson et al., 2005a,

Corollary 3].

Theorem 5.2.1

Let qλ(y, t) be strictly increasing in y for each t ∈ [0, T ] then option prices under the

q-optimal measure are less than those under the minimal martingale measure.

Conversely, if qλ(y, t) is strictly decreasing in y for each t ∈ [0, T ] then option prices under

the q-optimal measure are greater than those under the minimal martingale measure.

For particular models we can make further statements about prices with respect to q. So

would it be desirable to know under which conditions prices are increasing or decreasing in
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q. For the remainder of the section we focus on the Heston stochastic volatility model. In

its original form, [Heston, 1993], the model is given by

dSt
St

= µ dt+
√
vt dBt,

dvt = κ(θ − vt) dt+ ξ
√
vt dWt,

dBt dWt = ρ dt,

with constant parameters, µ being the drift, κ is the rate of mean reversion of the variance

process vt which has a long term mean of θ, and ξ is called the volatility of volatility. The

specification of the drift parameter µ of the spot price process did not matter in Heston’s

analysis as it becomes zero1 under the risk neutral measure Q. However, our aim is to find

risk neutral measures as close as possible to the original measure and then the specification

of the drift becomes important. With the choice of µ(v, t) = µ0
√
v prices under different

q-optimal measures turn out to be identical. Below we will examine the case µ(v, t) = µ0v.

First we rewrite the dynamics in terms of Yt =
√
vt and obtain

dSt
St

= µ0Y
2
t dt+ Yt dBt, dYt =

κ

2

(

m̄

Yt
− Yt

)

dt+
ξ

2
dWt, m̄ = θ − ξ2

4κ
. (5.5)

In order to obtain a q-optimal measure the pde (5.4) needs to be solved with the functions

λ(y, t) = µ0y
2, a(y, t) = κ

2 ( m̄y − y) and b(y, t) = ξ
2 . The solution is given in [Hobson, 2004,

Proposition 5.1] and based on the assumption that one can write f(y, t) = y2H(T − t)/2 +

G(T − t) with H(0) = G(0) = 0. Note, the change of measure is then given by ψ(y, t) =
ρ̄ξ
2 H(T − t)y.

Proposition 5.2.2

The dynamics of the particular Heston stochastic volatility model (5.5) is given under the

q-optimal measure by

dSt
St

= 0 dt+ Yt dBQ
t ,

dYt =

(

κ

2

(

m̄

Yt
− Yt

)

− ρξµ0

2
Yt −

ρ̄2ξ2

4
H(T − t)Yt

)

dt+
ξ

2
dWQ

t ,

where the function H is given on a case by cases basis as follows. Define

R = 1 − qρ2, A2 = |R| ξ
2

4
, B =

2κ+ 2qρξµ0

ξ2 |R| , D = qµ2
0 +

(κ+ qρξµ0)
2

ξ2R
, C =

√

|D|.

Case 1: R = 0; If κ+ qρξµ0 = 0 then H(t) = qµ2t, else

H(t) =
qµ2

κ+ qρξµ0

(

1 − e−(κ+qρξµ)t
)

.

1Or rather r if one considers a non-zero interest rate.
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Case 2: R > 0;

H(t) =
C

A
tanh

(

ACt+ tanh−1

(

AB

C

))

−B.

Case 3: R < 0; If D > 0 we have

H(t) =
C

A
tan

(

ACt− tan−1

(

AB

C

))

+B,

if D < 0 it is

H(t) =
(A2B2 − C2)(e2ACt−1)

2AC +A(AB + C)(e2ACt−1)
,

and finally if D = 0 we have

H(t) =
A2B2t

1 +A2Bt
.

Proof [Hobson, 2004, Proposition 5.1]. �

It follows from [Henderson et al., 2005a, Proposition 6] that the market price of volatility

risk ψ is increasing in q for all q where the q-optimal measure is well defined and hence we

conclude for the option price.

Proposition 5.2.3

In the stochastic volatility model (5.5) q-optimal prices for European options with convex

payoffs are decreasing in q.

Proof [Henderson et al., 2005a, Corollary 7]. �

With this ordering result in mind we now turn to a quantitative analysis on how much

option prices are changed by different choices of q. Transforming the volatility process Y

back into a variance process v and using log-prices Xt := lnSt yields the dynamics under

the q-optimal measure

dXt = −1

2
v dt+

√
vt dBQ

t ,

dvt =

(

κ(θ − vt) − ρξµ0vt −
ρ̄2ξ2

2
H(T − t)vt

)

dt+ ξ dWQ
t ,

(5.6)

and so the variance process follows a mean reverting process with a time depending mean

and a time depending speed of mean reversion. Let now the payoff of an option be given

by the FT measurable random variable O. We then define the value function U(x, v, T − t)

of O by

U(x, v, T − t) := EQ[O|Xt = x, vt = v],
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Parameter Description Value

θ long term variance 0.01
κ rate of mean reversion 2.0
ξ volatility of volatility 0.2
µ0 absolute drift on asset µ0V S 4.0
v0 initial variance 0.01
S0 initial asset price 1.0

Table 5.1: Parameters of the Heston model.

and so U(Xt, Yt, t) is a martingale under Q. Applying Itô’s formula and the fact that the

drift has to be zero it follows that the value function satisfies the pde2

Ut =
1

2
v
(

Uxx + ξ2Uvv + 2ρξUxv
)

+ (rd − rf −
1

2
v)Ux + (κ(θ − v) − γ(t)v)Uv − rdU,

γ(t) = ρξµ0 +
ρ̄2ξ2

2
H(t).

(5.7)

The sub-indices of U indicate the derivative of U with respect to that variable. In the

case of γ(t) = 0 and certain boundary conditions, including those corresponding to the

valuation of call options, an explicit solution can be found which is based on Fourier inver-

sion, see [Heston, 1993]. In other cases we rely on numerical calculations. We use a finite

difference method (Crank-Nicolson) on a non-uniform grid as described in [Kluge, 2002].

Convergence of this method has been tested for call and barrier options (γ = 0) where an

analytical solution was at hand. We use a sample market with parameters given in Table

5.1 representative of the dynamics of currency pairs in the foreign exchange market.

Figure 5.1 uses the above parameter values together with Strike K = 1 and T = 1. In the

upper graph we plot the put price for ρ ∈ [−0.5,−0.5] and q ∈ [−4, 5]. Over most of this

range qR > 0 and the q-optimal measure exists for all time, and even for q = 5 and |ρ| = 0.5

the q-optimal measure exists up to T = 1. As anticipated by Proposition 5.2.3, we observe

the put price is decreasing in q. The range of the graph represents about 16% difference in

prices between the extreme points. If we examine special cases of moving from say q = 0 to

q = 2, the price change is of the order of a couple of percent, depending on the correlation.

This is a non-trivial difference, and highlights the fact that the choice of pricing measure

has an impact on option prices. In the figure, put option prices are also observed to decrease

with correlation. It turns out that this is the case for ‘small’ absolute values of q. Note that

in the pricing pde (5.7), there are two drift terms arising from the incompleteness, ρξµ0

and ρ̄2ξ2

2 H(t). In the small q case, the first of these is dominant. If correlation is negative,

2We have reintroduced the interest rates necessary to describe the foreign exchange market, where rd

denotes domestic and rf foreign interest rate.
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Figure 5.1: Price of a 1 year at-the-money put option under the Heston model for various
values of ρ with parameters given in Table 5.1.
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Figure 5.2: The effect of correlation and volatility of volatility on implied volatilities for a
1 year put option priced under the original Heston model.

this term has a positive effect on the option price, whilst the reverse is true for positive

correlation. As the lower part of Figure 5.1 shows, once q is no longer small, the ordering

reverses. This is the case as the drift term involving ρ̄2H(t) becomes dominant. Outside the

range qR > 0, the function H may explode to infinity (for sufficiently large T ) and prices

are small as a result. Similarly, for q = −5 and ρ = 0.5, H explodes to −∞ and prices are

large.

One of the best ways of capturing the effects of a stochastic volatility model is by considering

the implied volatilities and the true test of a model is whether it can be calibrated well to

market data. By including the adjustment for volatility risk via the q measures, we have a

richer class of models which may provide a better fit. We will not focus on calibration here,

but rather on the shape of implied volatility smiles from the Heston model under q-optimal

measures.

The effects of different parameters on the implied volatilities in the original Heston model

(where γ(t) = 0 in the pricing pde (5.7)) are shown in Figure 5.2. We plot the implied

volatilities against the strike K of the put option with parameters of Table 5.1 and T = 1

and S0 = 1. The four smiles correspond to different choices of correlation ρ and volatility

of volatility ξ. When ρ = 0, the smile is symmetric about the at-the-money volatility.

Increasing ξ appears to increase the convexity of the smile. Non-zero correlation controls
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the smile’s asymmetry, important in equity markets. [Hakala and Wystup, 2002b] note the

same qualitative effects.

In the final figure we consider the effect of changing the drift parameter µ0 and the candidate

pricing measure parameterised by q. We also consider the effects of varying maturity. In

each case the implied volatilities are calculated from the Heston model with correlation

ρ = −0.2. There are two graphs (one for changing q and one for changing µ0) for each of

three maturities. The key feature that will aid our understanding is that the market price

of volatility risk ψ(Yt, t) = ρ̄ξ
2 H(T − t)Yt is time-inhomogeneous. Since, for each q, |H(τ)|

is increasing in τ , the effects of changing q will become more pronounced as the maturity

increases.

We begin with some generic observations which are typical features for stochastic volatility

models. The correlation is negative so the smiles are skewed to the left. As maturity

increases, the smile becomes flatter or less convex – beware the change in the horizontal

scale. By considering the left-hand column we see that as q increases, option prices decrease.

This is consistent with Proposition 5.2.3. Conversely, in the right-hand column, we see that

as µ0 increases, the option price increases. This is a consequence of the drift term appearing

in the pde (5.7). Since ρ < 0, the term −ρξµ0v is positive but the second term ρ̄2ξ2

2 H(t) is

negative for ρ < 0 and q > 0. The two terms will have competing effects, and the overall

effect of change in µ0 will depend on which term dominates. If H is small (q or T small),

then the first term dominates and increasing µ0 shifts the smile upward, as we see in Figure

5.3. However, if H is large then the second term dominates and by increasing µ0 we expect

the smile to shift down (not shown in the figure). Also note, if the correlation is positive

both drift terms are positive and so the smile is also expected to shift down whilst µ0

increases.

A final feature of the graphs that we wish to remark on is the relative magnitude of the

implied volatility shifts as maturity changes. For the graphs in the right column, (q = 0 and

µ0 = 0 or 4) the change in drift induced by the pricing measure is −ρξµ0v. The magnitude

of the implied volatility changes seems to approximately double each time T increases by a

factor of 4. Conversely , on the left hand side, modification to the drift under Q consists of

the two terms −ρξµ0v − ρ̄2ξ2

2 H(t) and as H(t) is positive and increasing in t, the effect of

changing q is comparatively larger when the maturity is large.
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Figure 5.3: Implied volatility smiles for the Heston model with ρ = −0.2 and T = 0.25
(top row), T = 1 (middle row) and T = 4 (bottom row). The solid line in each graph
corresponds q = 0, µ0 = 4. The lower line in the graphs in the left column correspond to a
higher value of q (q = 4, µ = 4) and the lower lines in the graphs on the right correspond
to a lower value of µ (q = 0, µ0 = 0). Note that the horizontal scale changes with maturity
by a factor of

√
T .
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5.3 Pricing measures in a spot electricity model

We assume the underlying spot process cannot be used to hedge derivatives and hence

can be considered a non-tradable asset in the sense of the fundamental theorem of option

pricing. Hence the risk neutral measure can be any measure Q equivalent to the real world

measure P. Under these assumptions the problem of finding a q-optimal measure becomes

trivial as Q = P is a possibility and so P turns out to be the q-optimal risk neutral measure.

The problem becomes interesting when we assume a liquid forward market in addition to

the dynamics of the underlying. Forwards and futures can be seen as the simplest form

of derivatives and the assumption of a liquid electricity forward market is not unrealistic.

Assume today is t = 0 and we want to price an option maturing at T . Let the delivery price

of a forward delivering at a time t be given by F (t). The problem of finding the q-optimal

measure is then a constrained optimisation of the form

{

E

[(

dQ
d P

)q]

→ min

Q ∈ M
, M :=

{

Q ∼ P : EQ[St|F0] = F (t), ∀t ∈ [0, T ]
}

.

Although it is very easy to formulate, the problem seems to be hard. In models with traded

and non-traded assets3, the constraint on Q to turn all traded assets into martingales can

be parametrised in such a way to obtain an unconstrained optimisation problem. This does

not seem to be feasible in our case. Therefore, we only present a solution of a special case.

First we focus on q ∈ {0, 1}, i.e. the minimal reverse entropy measure and the minimal

relative entropy measure, respectively, and later we will further restrict the set of possible

equivalent measures M. We define the measure change by

dQ = ΠT d P,
dΠt

Πt
= −ψt dWt, Π0 = 1.

Lemma 5.3.1

The q-optimal measures for q ∈ {0, 1} parameterised by ψ (assuming squared integrability

E[ψ2
t ]) are given by minimising

∫ T

0
E[ψ2

t ] dt→ min, q = 0;

∫ T

0
EQ[ψ2

t ] dt→ min, q = 1,

each under the constraint of Q ∈ M.

Proof According to the definition of q-optimal measures, q ∈ {0, 1}, we have

E[− ln ΠT ] → min, q = 0; E[ΠT ln ΠT ] = EQ[ln ΠT ] → min, q = 1.

3The stochastic volatility model is one example where the spot is traded but not the volatility.
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From

d ln Πt = −1

2
ψ2
t dt− ψt dWt

=
1

2
ψ2
t dt− ψt dWQ

t ,

and taking expectations of ΠT the statement follows directly. �

We now specify a model for the dynamics of the electricity price without spikes:

St = exp(f(t) +Xt),

dXt = −αXt + σ dWt,

and further restrict the set of martingale measures M so that the risk neutral spot price

dynamics is still given by an exponential Ornstein-Uhlenbeck process with a constant speed

of mean reversion. Hence, we assume the market price of risk ψt is of the form

ψt =
α̂− α

σ
Xt −

α̂

σ
µ(t).

From Girsanov’s theorem we know dWQ
t = dWt + ψt dt is a Q-Brownian motion and so

the dynamics under Q is given by

St = exp(f(t) +Xt),

dXt = α̂(µ(t) −Xt) + σ dWQ
t .

Lemma 5.3.2

Given the above parameterisation of ψt = α̂−α
σ Xt − α̂

σµ(t), the constraint

EQ[St|F0] = F (t), ∀t ∈ [0, T ],

is equivalent to

α̂µ(t) = α̂(lnF (t) − f(t)) +
∂

∂t
(lnF (t) − f(t)) − σ2

4
(1 + e−2α̂t), ∀t ∈ [0, T ].

Proof The dynamics under Q can also be written as (see Remark B.1.3)

St = exp(f(t) + f1(t) +Xt), f ′1(t) + α̂f1(t) = α̂µ(t)

dXt = −α̂Xt + σ dWQ
t ,

with the expectation being

EQ[St] = exp

(

f(t) + f1(t) +X0 e−α̂t +
σ2

4α̂
(1 − e−2α̂t)

)

,

and so the constraint EQ[St] = F (t) is equivalent to

f1(t) = lnF (t) − f(t) −X0 e−α̂t−σ2

4α̂
(1 − e−2α̂t),
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and as α̂µ(t) = f ′1(t) + α̂f1(t) the result follows. �

As the drift µ is completely determined by the forward curve, finding an optimal risk neutral

measure is equivalent to an unconstrained optimisation in the speed of mean reversion

parameter α̂. For the minimal reverse entropy measure we therefore have

∫ T

0
E[ψ2

t ] dt =

(

α̂− α

σ

)2 ∫ T

0
E[X2

t ] dt+ 2
α̂− α

σ2

∫ T

0
α̂µ(t) E[Xt] dt+

1

σ2

∫ T

0

(

α̂µ(t)
)2

dt,

and with E[Xt] = X0 e−αt, E[X2
t ] = σ2

2α(1 − e−2αt) +X2
0 e−2αt and inserting the expression

for µ we obtain a function with linear terms in α̂, α̂2t, e−2α̂t, e−4α̂ and cross-terms to be

minimised over α̂ > 0 which can be solved using numerical optimisation methods.



Chapter 6

Outlook and extensions

The stochastic process introduced in this thesis is capable of capturing the apparent prop-

erties of electricity spot price time series, that is to say mean-reversion, seasonality and

spikes. Despite the additional complication of an independent jump process, the model is

still analytically tractable in so far as we can obtain closed form solutions (up to integrals)

of expectation values leading to option prices for path-independent options. For call and

put options on forwards with delivery periods we are still able to provide approximate solu-

tions. Approximations of the probability distributions of the spike process make it possible

to introduce a grid-based method to price path dependent options like swing contracts nu-

merically. The performance of the algorithm is not yet fast enough to be acceptable to a

trader and our attempts to introduce a very fast dimensional reduced form did not fully

satisfy accuracy requirements. Further investigations into that method are required in order

to assess improvements. Extrapolation methods might also be useful to infer the price of an

option with many exercise opportunities based on the same option with fewer rights. It is

shown in [Howison, 2005] that for an Bermudan option we have the asymptotic expansion

V (n, S, t) = V (∞, S, t)−W (S, t)/n+O(1/n5/2). Knowing the price of two different n1 and

n2 one could determine V (∞, S, t) and W (S, t) and then extrapolate to any value of n. It

is possible that a similar relationship might hold for swing options, too.

We also give guidance on which particular risk neutral measure to choose as the market

is incomplete. Since the main constraint of Q being consistent with the observed forward

curve does not suffice to determine a unique measure, we examine q-optimal measures in

that setting. However we are only able to give solutions in the very simplest cases. More

research needs to be done to find more general solutions.

Finally, extensions to the stochastic spot price model might also be of interest for further

research. A natural development would be to include stochastic volatility and a stochastic

104
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seasonality component and would lead to a model like

St = exp(f(t) +Xt + Yt + Zt),

dXt = −αXt dt+
√

Vt dW
(1)
t ,

dVt = κ(v̄ − Vt) dt+ ξ
√

Vt dW
(2)
t ,

dZt = µ dt+ σ dBt,

dYt = −βYt− dt+ Jt dNt,

with W (1), W (2) and B being Brownian motions with some form of dependency. In addition,

the intensity of the Poisson process might be assumed to be time-dependant. Although such

a model might be a much better fit to historical data, and to the forward price dynamics,

it is likely to be considerably harder to calibrate and to use to price options with it.

Despite the remaining open questions we believe that this work provides a comprehensive

overview of a particular stochastic model suitable to describe electricity price dynamics, for

the purpose of option pricing.



Appendix A

Elementary probability

Due to the importance of a normally N (0, 1) distributed random variable we denote its

density and distribution by

ϕ(x) :=
1√
2π

e−
x2

2 ,

N(x) :=

∫ x

−∞
ϕ(y) dy =

1

2
+

1

2
erf

(

x√
2

)

.

Table A shows some properties of a few distributions.

A.1 Products and sums

Proposition A.1.1 (Product of independent random variables)

Let X and Y be two independent random variables where Y has a density and X has a

density except at the point 0 where it has a positive probability P(Y = 0) = p, i.e.

FX(x) = p1x≥0 +

∫ x

−∞
fX(y) dy,

FY (x) =

∫ x

−∞
fY (y) dy,

Distribution symbol density mgf(θ) E var

Exponential Exp(λ) λ e−λx 1x≥0
λ
λ−θ , (θ < λ) 1

λ
1
λ2

Gamma Γ(λ, α) 1
Γ(α)λ

αxα−1 e−λx 1x>0 ( λ
λ−θ )

α, (θ < λ) α
λ

α
λ2

Lognormal 1
xfN (ln(x)) eµ+σ2/2 e2µ+σ2

(eσ
2 −1)

Normal N (µ, σ2) 1√
2πσ2

exp
(

− (x−µ)2

2σ2

)

exp(µθ + 1
2σ

2θ2) µ σ2

Table A.1: Some properties of distributions.
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then the distribution of the product XY is given by

FXY (c) = p1c≥0 +

∫ c

−∞
fXY (x) dx,

fXY (c) =

∫ ∞

−∞
fX(c/x)

fY (x)

|x| dx.

(A.1)

Proof We have

FXY (c) = P(XY ≤ c) = P(Y · 0 ≤ c) P(X = 0) + P(XY ≤ c and X 6= 0)

= p1c≥0 + P(XY ≤ c and Y 6= 0),

and

P(XY ≤ c and Y 6= 0) =

∫

{xy≤c}
fX(x)fY (y) dx dy

=

∫ 0

−∞

∫ ∞

c
y

fX(x)fY (y) dx dy +

∫ ∞

0

∫ c
y

−∞
fX(x)fY (y) dx dy

=

∫ 0

−∞

∫ c

−∞
−1

y
fX(x/y)fY (y) dx dy +

∫ ∞

0

∫ c

−∞

1

y
fX(x/y)fY (y) dx dy

=

∫ ∞

−∞

∫ c

−∞

1

|y|fX(x/y)fY (y) dx dy

=

∫ c

−∞

∫ ∞

−∞
fX(x/y)

fY (y)

|y| dy dx.

�

Proposition A.1.2 (Sum of independent random variables)

Let X and Y be two independent random variables where X has a density and Y has a

density except at the point 0 where it has a positive probability P(X = 0) = p, i.e.

FX(x) =

∫ x

−∞
fX(y) dy,

FY (x) = p1x≥0 +

∫ x

−∞
fY (y) dy,

then X + Y has a density and it is given by

fX+Y (c) = pfX(c) +

∫ ∞

−∞
fY (c− x)fX(x) dx. (A.2)

Proof We have

FX+Y (c) =

∫ ∞

−∞
FY (c− x)fX(x) dx,

=

∫ ∞

−∞

∫ c−x

−∞
fY (y)fX(x) dy dx+

∫ ∞

−∞
p1x≤cfX(x) dx,

=

∫ ∞

−∞

∫ c

−∞
fY (y − x)fX(x) dy dx+ pFX(c),
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and changing the order of integration yields the density

fX+Y (c) =

∫ ∞

−∞
fY (c− x)fX(x) dx+ pfX(c).

�

Lemma A.1.3

Let X ∼ N (µ, σ2) and Y ∼ Exp(λ) be a normally and exponentially distributed random

variable, respectively. Then the probability density function of the sum X + Y is given by

fX+Y (x) = λ e
1
2
λ2σ2+λ(µ−x) N

(

x− µ

σ
− λσ

)

.

Proof The density of the sum of two random variables is the convolution of their densities,

i.e.

fX+Y (c) =

∫ ∞

−∞
fY (c− x)fX(x) dx,

which is

fX+Y (c) =
λ√

2πσ2

∫ c

−∞
e−λ(c−x) exp

(

−(x− µ)2

2σ2

)

dx

= λ e
1
2
λ2σ2+λ(µ−c)

(

1 − N

(

λσ +
µ− c

σ

))

.

�

A.2 Conditional expectations

Lemma A.2.1

Let X ∼ N (0, 1) be a standard normally distributed random variable then

E[X|X ≤ c] = − e−
c2

2√
2πN(c)

Proof We know

E[X|X ≤ c] =
E[X1X≤c]
P(X ≤ c)

,

and with

E[X1X≤c] =
1√
2π

∫ c

−∞
x e−

x2

2 dx =
1√
2π

∫ c2

2

∞
e−z dz = − e

c2

2√
2π
,

and

P(X ≤ c) = N(c),

we obtain the desired result. �
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Corollary A.2.2

Let X ∼ N (µ, σ2) be a normally distributed random variable then

E[X|X ≤ c] = µ− σ
ϕ
( c−µ

σ

)

N
( c−µ

σ

) .

Proof Define Y := 1
σ (X − µ) then Y ∼ N (0, 1) and so

E[X|X ≤ c] = E

[

µ+ σY |Y ≤ c− µ

σ

]

= µ+ σ E

[

Y |Y ≤ c− µ

σ

]

�

Lemma A.2.3

Let X ∼ N (µ1, σ
2
1) and Y ∼ N (µ2, σ

2
2) two independent normally distributed random

variables then

E[X|X + Y = c] =
σ2

1

σ2
1 + σ2

2

(

c−
(

µ2 −
σ2

2

σ2
1

µ1

))

.

Proof For any two random variables with a density we have

E[X|X + Y = c] =

∫

R

xfX|X+Y=c(x) dx =

∫

R
xfX(x)fY (c− x) dx

∫

R
fX(x)fY (c− x) dx

.

With

fX|X+Y=c(x) = fX|Y=c−x(x) =
fX,Y (x, c− x)
∫

R fX,Y (x, c− x)
dx

and given the random variables are independent we obtain

E[X|X + Y = c] =

∫

R
xfX(x)fY (c− x) dx

∫

R
fX(x)fY (c− x) dx

.

As X and Y are normally distributed we finally obtain

E[X|X + Y = c] =
σ2

1(c− µ2) + σ2
2µ1

σ2
1 + σ2

2

.

�

Lemma A.2.4

Let X ∼ N (µ, σ2) and Y ∼ Exp(λ) be two independent normally and exponentially dis-

tributed random variables, respectively, then with X̃ := X + λσ2 we have

E[X|X + Y = c] = E[X̃|X̃ ≤ c] = µ+ λσ2 − σ
ϕ
(

c−µ−λσ2

σ

)

N
(

c−µ−λσ2

σ

) ,

and in particular

lim
c→∞

E[X|X + Y = c] = µ+ λσ2.



APPENDIX A. ELEMENTARY PROBABILITY 110

Proof Given the densities

fX(x) =
1√
2πσ

exp

(

−(x− µ)2

2σ2

)

, fY (x) = λ e−λx 1x≥0,

and by straight forward computation we obtain

E[X|X + Y = c] =

∫

R
xfX(x)fY (c− x) dx

∫

R
fX(x)fY (c− x) dx

=

∫ c
−∞ x exp

(

− (x−µ)2

2σ2 − λ(c− x)
)

dx

∫ c
−∞ exp

(

− (x−µ)2

2σ2 − λ(c− x)
)

dx

=

∫ c
−∞ x exp

(

− (x−µ−λσ2)2

2σ2

)

dx

∫ c
−∞ exp

(

− (x−µ−λσ2)2

2σ2

)

dx

= E[X̃|X̃ ≤ c],

where X̃ ∼ N (µ+ λσ2, σ2) is some normal random variable. �

Lemma A.2.5

Let X and Y be two independent random variables with X having a density and Y having

a density except at the point 0 where P (Y = 0) = p, i.e.

FY (c) =

∫ c

−∞
fY (x) dx+ p1c≥0,

then the conditional expectation is given by

E[X|X + Y = c] =

∫∞
−∞ xfX(x)fY (c− x) dx+ pcfX(c)

fX+Y (c)
. (A.3)

Proof First note that

FX,X+Y (a, b) = P(X ≤ a and Y ≤ b−X)

=

∫ a

−∞

∫ b

−∞
fX(x)fY (y − x) dy dx+

∫ a

−∞
pfX(x)1x≤b dx.

For any two random variables X and Z a function g which satisfies
∫

A
X(ω) d P(ω) =

∫

A
g(Z(ω)) d P(ω), ∀A ∈ Y −1(B(R)).

is a conditional expectation and we write g(c) = E[X|Z = c]. Here, B(R) denotes the set

of all Borel sets in R. This equation is equivalent to

∫ b

a

∫

R

x d PX,Z(x, z) =

∫ b

a
g(z) d PZ(z), ∀a < b.

Now, let Z := X + Y and so the condition becomes

∫ b

a

∫

R

xfX(x)fY (z − x) dx dz +

∫ b

a
pxfX(x) dx =

∫ b

a
g(z)fX+Y (z) dz, ∀a < b,
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which is satisfied if

g(c)fX+Y (c) =

∫ ∞

−∞
xfX(x)fY (c− x) dx+ pcfX(c).

�

Lemma A.2.6

Let X be lognormally distributed, i.e. logX ∼ N (µ, σ2) then

E

[

(aX + b)1X∈[K,K̂]

]

= a eµ+ 1
2
σ2
(

N(d1) − N(d̂1)
)

+ b
(

N(d2) − N(d̂2)
)

,

with

d2 =
µ− logK

σ
, d̂2 =

µ− log K̂

σ
,

and d1 = d2 + σ, d̂1 = d̂2 + σ.

Lemma A.2.7

Let X be lognormally distributed, i.e. logX ∼ N (µ, σ2) then

E
[

(X −K)+
]

= eµ+ 1
2
σ2

N(d1) −K N(d2)

E
[

(K −X)+
]

= eµ+ 1
2
σ2

(N(d1) − 1) −K(N(d2) − 1)

with

d2 =
µ− logK

σ
, d1 = d2 + σ.



Appendix B

The Ornstein-Uhlenbeck process

A stochastic process Xt which satisfies the stochastic differential equation (sde)

dXt = α(µ−Xt) + σ dWt (B.1)

is called an Ornstein-Uhlenbeck (OU) process with the speed of mean-reversion α, longterm

level µ and volatility σ. The parameters can also be functions of time.

B.1 Solution of the sde

Assuming a constant speed of mean-reversion α but allowing for variable longterm level

µ(t) and volatility σ(t), the sde can be easily solved by multiplying Xt with eαt. Defining

Yt := eαtXt and applying Itô’s formula yields

dYt = eαt (αµ(t) dt+ σ(t) dWt) , (B.2)

which can be directly integrated. The solution simplifies in the constant coefficient case

and is stated in the following Lemma.

Lemma B.1.1 (Solution of an OU process)

Let Xt be a constant coefficient OU process (B.1) then its unique solution is

Xt = µ+ (X0 − µ) e−αt +σ
∫ t

0
e−α(t−s) dWs. (B.3)

In particular, if X0 = x0 is not random, Xt is normally distributed with

Xt ∼ N
(

µ+ (x0 − µ) e−αt,
σ2

2α

(

1 − e−2αt
)

)

. (B.4)

Given the knowledge of the state at any time s < t, Xs = xs, the conditional distribution is

Xt ∼ N
(

µ+ (xs − µ) e−α(t−s),
σ2

2α

(

1 − e−2α(t−s)
)

)

. (B.5)
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The solution of the OU sde (B.5) also gives an intuitive understanding of the parameters of

the process. It says, on average deviations from the mean µ are damped down by a factor

of e−α∆t. A characteristic quantity describing this behaviour is the half-time τ1/2 defined

as the time in which the deviation is halved: 1
2 = e−ατ1/2 or equivalently τ1/2 = ln 2

α . The

effect of the volatility σ becomes clear in the long-term behaviour of Xt, i.e. t→ ∞. Then

we have

Xt ∼ N
(

µ,
σ2

2α

)

, (t→ ∞),

and so the standard deviation in the long-term is σ√
2α

.

Remark B.1.2 (Simulation)

Equation (B.5) can be utilised to simulate realisations of the process. For fixed s, t (s < t)

and an independent, normally distributed random variable ξ ∼ N (0, 1) we can define

Xt = µ+ e−α(t−s)(Xs − µ) +

√

σ2

2α

(

1 − e−2α(t−s)) ξ.

Remark B.1.3 (Relation with seasonality)

Let X be an OU process with zero mean

dXt = −αXt dt+ σ dWt

and f : [0,∞) → R be a twice differentiable function. It is easy to show that the process

Yt := f(t) +Xt is also an OU process but with a time dependent average:

dYt = α(µ(t) − Yt) dt+ σ dWt, µ(t) = f(t) +
f ′(t)
α

.

Lemma B.1.4 (Moment generating function)

The moment generating function of an OU process Xt with constant coefficients and initial

value X0 = x0 is

ΦX(θ, t) := E eθXt = exp

(

θµ+ θ(x0 − µ) e−αt +θ2 σ
2

4α
(1 − e−2αt)

)

. (B.6)

Proof Based on (B.4), Xt is normally distributed with some mean m and standard de-

viation s. Therefore, the random variable exp(θXt) is lognormally distributed with mean

exp
(

θm+ 1
2θ

2s2
)

. �
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B.2 Parameter estimation

Given a discrete time series {x0, x1, . . . , xn} as a realisation of a stochastic process, a com-

monly used procedure to estimate unknown parameters of the process is the maximum

likelihood method (ML). Thereby, the parameters are chosen to maximise the joint density

fXt0 ,...,Xtn
(x0, . . . , xn). For Markov processes, the joint density can be represented as a

product of transitional densities:

fXt0 ,...,Xtn
(xt0 , . . . , xtn) = fXt0

(x0)fXt1 |Xt0=x0
(x1) · · · fXtn |Xtn−1=xn−1

(xn). (B.7)

If transitional densities are not known explicitly, martingale estimation functions can be

used to obtain approximate estimations and even if transitional densities are known, the

method could provide analytic expressions, whereas the ML method might not. A good

overview of the method is given in [Bibby and Sorensen, 1995].

Due to (B.5), we know the transitional density of an OU process. Keeping in mind the

density of a N (m,σ2) distributed random variable, which is 1√
2πσ2

exp
(

− (x−m)2

2σ2

)

, the

transition density of an OU process with constant coefficients (B.1) is given by

fXt|Xs=y(x) =

√

α

πσ2(1 − e−2α(t−s))
exp

(

−α
(

x− µ− e−α(t−s)(y − µ)
)2

σ2(1 − e−2α(t−s))

)

.

The log-likelihood function, defined as the logarithm of the joint density (B.7) then is1

L(µ, σ, α) =
1

2

n
∑

i=1

ln

(

α

πσ2(1 − e−2α∆ti)

)

− α

σ2

n
∑

i=1

(

xi − µ− e−α∆ti(xi−1 − µ)
)2

1 − e−2α∆ti
(B.8)

with ∆ti := ti − ti−1. The estimated parameters µ̂, σ̂ and α̂ given by the ML method

are the solution to the optimisation L(µ, σ, α) → max, subject to the constraints α > 0

and σ > 0. Numerical algorithms are capable of solving three-dimensional optimisation

problems. However, by checking first order criteria for optimality, further insight can be

gained. For a maximum in the interior we require the first derivatives to be zero:

∂L

∂µ
=

2α

σ2

n
∑

i=1

xi − e−α∆ti xi−1 − (1 − e−α∆ti)µ

1 + e−α∆ti
= 0,

∂L

∂σ
= −n

σ
+

2α

σ3

n
∑

i=1

(

xi − µ− e−α∆ti(xi−1 − µ)
)2

1 − e−2α∆ti
= 0,

∂L

∂α
= 0.

1We have assumed that the distribution of Xt0 is either unknown or Xt0 = x0 is deterministic.
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The last derivative is quite complex and an analytic solution does not seem to exist, but

the first two equations can be solved explicitly, provided α or its estimate is known:

µ̂ =

∑n
i=1

xi−e−α∆tixi−1

1+e−α∆ti

∑n
i=1

1−e−α∆ti

1+e−α∆ti

,

σ̂2 =
2α

n

n
∑

i=1

(

xi − µ̂− e−α∆ti(xi−1 − µ̂)
)2

1 − e−2α∆ti
.

These two estimates can be inserted into L(µ, σ, α) in order to reduce the three-dimensional

optimisation into a one-dimensional problem. Further simplifications can be made if µ is

known and time-steps are small and equidistant, ∆ti = ∆t. The log-likelihood function is

then

L(µ, σ, α) = n ln

(

α

πσ2(1 − e−2α∆t)

)

− α

σ2(1 − e−2α∆t)

n
∑

i=1

(

xi − µ− e−α∆t(xi−1 − µ)
)2

≈ n ln

(

1

2πσ2∆t

)

− 1

2σ2∆t

n
∑

i=1

(

xi − µ− e−α∆t(xi−1 − µ)
)2

where the approximation 1 − e−2α∆t ≈ 2α∆t has been made, and hence

∂L

∂α
≈ − 1

σ2∆t

n
∑

i=1

(

xi − µ− e−α∆t(xi−1 − µ)
)

α e−α∆t(xi−1 − µ),

from which the estimation of the mean-reversion rate α follows:

α̂ = − 1

∆t
ln

(∑n
i=1(xi − µ)(xi−1 − µ)
∑n

i=1(xi−1 − µ)2

)

,

σ̂2 =
2α

n(1 − e−2α∆t)

n
∑

i=1

(

xi − µ− e−α∆t(xi−1 − µ)
)2
.

Due to the approximations made for small ∆t it is not immediately clear how efficient the

parameter estimation is. However, the method based on martingale estimation function

also obtains the same expression for α̂, see [Bibby and Sorensen, 1995].



Appendix C

Transform analysis

The following overview about transform analysis of affine jump-diffusion processes is based

on [Duffie et al., 2000]. The method allows us to determine the moment generating function

of the jump process by solving an ode. Furthermore, a formula is provided leading to

the expectation value of a call-option payoff. For the sake of simplicity we only consider

processes (Zt) of the type

dZt = −αZt dt+ σ dWt + Jt dNt, (C.1)

keeping in mind that the spot price process is St = exp(Zt).

C.1 Moment generating function

In short, they define a more general moment generating function which is conditioned on

the value at a time t:

ΨZ(θ, t, T, x) := E

[

eθZT |Zt = x
]

.

It is easy to show that ΨZ(θ, t, T, Zt) is a martingale and hence its drift component needs

to be zero. This condition yields a pde which can be solved explicitly using the ansatz

Ψ(θ, t, T, x) = exp(a(t) + b(t)x),

given θ and T are fixed, i.e. a and b might also depend on θ and T . Before going into

the details we state a general result on how to compensate a jump process to obtain a

martingale.

Remark C.1.1 (Compensation of a jump process)

Let f : R2 → R be some function, (Zt)t∈R+ be a left-continuous stochastic process and

(Jt)t∈R+ an iid process (Js and Jt are iid for all s 6= t). Furthermore let (Nt)t∈R+ denote a

116
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Poisson process with intensity λ, and ti the random jump times. Under certain regularity

conditions, the process
Nt
∑

i=1

f(Zti−, Jti) − λ

∫ t

0
ΓJ(Zs) ds,

with ΓJ(z) := E[f(z, J)], is a martingale.

Proof We only give the idea. For the conditional expectation of the jump-part we find

E

[

NT
∑

i=1

f(Zti−, Jti)Ft

]

−
Nt
∑

i=1

f(Zti−, Jti) = E





∑

t<ti≤T
E[f(Zti−, Jti)|ti, Zti−]Ft





= E





∑

t<ti≤T
ΓJ(Zti−)Ft





= E

[∫ T

t
ΓJ(Zs−) dNsFt

]

= E

[∫ T

t
ΓJ(Zs)λ dsFt

]

,

and hence

E

[

NT
∑

i=1

f(Zti−, Jti) −
∫ T

0
ΓJ(Zs)λ dsFt

]

=

Nt
∑

i=1

f(Zti−, Jti) −
∫ t

0
ΓJ(Zs)λ ds.

�

To see which conditions a and b have to satisfy in order to obtain a martingale Ψt :=

Ψ(θ, t, T, Zt) = exp(a(t) + b(t)Zt) we apply Itô’s formula and obtain

dΨt = Ψt

(

ȧ(t) +
1

2
σ2b(t)2 + (ḃ(t) − αb(t))Zt

)

dt+ Ψtb(t)σ dWt + Ψt−(eb(t)J −1) dNt.

According to Remark C.1.1 (see also [Duffie et al., 2000, Appendix A] for a proof), the

jump component minus a drift

Nt
∑

i=0

Ψti−(eb(t)J −1) − λ

∫ t

0
Ψs(ΦJ(b(s)) − 1) ds

is a martingale. Therefore, Ψt is a martingale if its drift added to the drift component above

is zero, i.e.

ȧ(t) +
1

2
σ2b(t)2 + λ(ΦJ(b(s)) − 1) + (ḃ(t) − α)Zt = 0,

which is satisfied if

ȧ(t) = −1

2
σ2b(t)2 − λ(ΦJ(b(s)) − 1),

ḃ(t) = αb(t),
(C.2)
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subject to the boundary condition a(T ) = 0 and b(T ) = θ, because ΨT = E[eθZT |ZT ] =

eθZT . Given ΦJ is continuous, the unique solution to the system of ode’s is obviously

a(t) = θ2 σ
2

4α
(1 − e−2α(T−t)) + λ

∫ T

t
ΦJ(θ e−α(T−s)) − 1 ds,

b(t) = θ e−α(T−t) .

The moment generating function of Z therefore is

ΦZ(θ, t) = Ψ(θ, 0, t, z0) = exp(a(0) + b(0)z0)

= exp

(

θ2 σ
2

4α
(1 − e−2αt) + λ

∫ t

0
ΦJ(θ e−αs) − 1 ds+ θ e−αt z0

)

.

C.2 Expectation of a call-option payoff

In order to formulate an important result which will allow us to determine the expected

payoff of a call option, we need to define the well-behavedness property.

Definition C.2.1

We call the process (Zt) from (C.1) well-behaved at (θ, T ) if there exists a unique solution

to (C.2) and

1. E

[

∫ T
0 |Ψt(ΦJ(b(t)) − 1)| dt

]

<∞,

2. E

[

√

∫ T
0 (Ψtb(t))2 dt

]

<∞,

3. E[|ΨT |] <∞.

Define

Gθ,c(K,T, z0) := E

[

eθZT 1cZT≤K
]

,

then the expected payoff of a call option can be written as

E[ST −K]+ = E[ST1ST≥K ] − E[K1ST≥K ] = G1,−1(− lnK,T, z0) −KG0,−1(− lnK,T, z0).

We cite the result from [Duffie et al., 2000].

Proposition C.2.2

Suppose, for fixed T > 0, θ ∈ R and c ∈ R, that Z is well-behaved at (θ + iνc, T ) for any

ν ∈ R and that
∫

R |ΦZ(θ + iνc, T )| dν <∞. Then Gθ,c(·, T, z0) is well defined and given by

Gθ,c(K,T, z0) =
1

2
ΦZ(θ, T ) − 1

π

∫ ∞

0

1

ν
=
(

ΦZ(θ + iνc, T ) e−iνθ
)

dν,

where ΦZ denotes the complex valued moment generating function and =(z) the imaginary

part of any value z ∈ C.
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Finally, we give an alternative proof which is based on the proof of Lévy’s Inversion Theorem.

Proposition C.2.3

Let Z be a random variable and its truncated moment generating function be defined by

Gν(x) := E
[

eνZ 1{Z≤x}
]

=

∫ x

−∞
eνy dFZ(y).

If the moment generating function Φ(ν + iθ) exists for some ν ∈ R and all θ ∈ R then

Gν(x) =
Φ(ν)

2
− 1

π

∫ ∞

0

=
(

Φ(ν + iθ) e−iθx
)

θ
dθ.

Proof We show
1

π

∫ ∞

0

=
(

Φ(ν + iθ) e−iθx
)

θ
dθ =

Φ(ν)

2
−Gν(x). (C.3)

Define

Ic :=
1

π

∫ c

0

=
(

Φ(ν + iθ) e−iθx
)

θ
dθ

=
1

π

∫ c

0

=
(∫

R
e(ν+iθ)y dFX(y) e−iθx

)

θ
dθ

=
1

π

∫ c

0

∫

R

=
(

e(ν+iθ)y e−iθx
)

θ
dFX(y) dθ

=
1

π

∫ c

0

∫

R

eνy sin(θ(y − x))

θ
dFX(y) dθ.

The integral is uniformly convergent and so we may change the order of integration and

obtain

Ic =
1

π

∫

R

eνy
∫ c

0

sin(θ(y − x))

θ
dθ dFX(y).

Because the integral with respect to θ is continuous in c and bounded we obtain for the

limit

lim
c→∞

Ic =
1

π

∫

R

eνy
∫ ∞

0

sin(θ(y − x))

θ
dθ dFX(y),

where the inner integral has the solution

∫ ∞

0

sin(θ(y − x))

θ
dθ =

π

2
sign(y − x) =

π

2











−1 y − x < 0

0 y − x = 0

1 y − x > 0

which yields the desired result

lim
c→∞

Ic =
1

2

∫

R

eνy sign(y − x) dFX(y)

=
1

2

(

∫

{y>x}
eνy dFX(y) −

∫

{y<x}
eνy dFX(y)

)

=
1

2
(Φ(ν) −Gν(x) −Gν(x−)) .

�



Appendix D

Option pricing and the inability to

hedge with the underlying

The inability to store electricity and hence the inability to hedge derivative contracts with

the underlying is the main reason why the market is incomplete. Nevertheless, there has

to be a consistency between prices of different options in order for the market to be free of

arbitrage.

Based on the free-arbitrage principle, the following sections briefly describe how to price

options if the underlying is an Itô process with one stochastic source

dSt = µ(St, t) dt+ σ(St, t) dWt,

and a money market account with a constant interest rate r

dMt = Mtr dt.

For further details see [Björk, 1998, Chapter 10].

D.1 Risk neutral valuation

According to [Björk, 1998, Proposition 10.3], the prices Vt of all contingent claims are given

by the discounted expected final payoff g(ST ) under one equivalent measure Q. The specific

choice of the measure Q is given by the market. Once a measure has been chosen, all

derivatives have to be priced under the same measure to avoid arbitrage opportunities.

Proposition D.1.1

Under the absence of arbitrage, the price of an option is given by

Vt = e−r(T−t) EQ[g(ST )|St],

120
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where Q is some equivalent measure characterised by a density ΠT with dQ = ΠT d P

defined by the sde
dΠt

Πt
= −ψ(St, t) dWt, Π0 = 1,

with some function ψ, called the market price of risk. Under the probability measure Q,

the process Wψ
t := Wt+ψt is a Brownian motion1, i.e. the drift under Q is altered by −ψσ:

dSt = (µ(St, t) − ψ(St, t)σ(St, t)) dt+ σ(St, t) dWψ
t .

Remark D.1.2

In a complete market where hedging with the underlying is possible, the risk neutral measure

Q is uniquely determined. Without going into the details of the derivation, it is required

that e−rt ΠtSt is a martingale and hence its drift has to be zero. It follows that ψ = µ−rSt

σ

and therefore the drift of S under Q is always the same as the money market account, i.e.

rSt.

D.2 Valuation by a pde approach

Although it is not possible to replicate any contingent claim as we are only left with a

money market account to invest in, prices of different derivatives have to be consistent.

Let us assume (Vt) and (Wt) are the stochastic processes denoting the option prices of two

options and the dynamics are given by

dVt = µV (St, t) dt+ σV (St, t) dWt,

dWt = µW (St, t) dt+ σW (St, t) dWt.

Now, the idea is to construct a self financing and risk-less portfolio consisting of the deriva-

tives V and W . If no arbitrage exists in the market, the drift of the portfolio value has to

be the same as that of the money market account.

If the value of the portfolio at time t is αtVt+βtWt, the change in value is then αtdVt+βtdWt

because the portfolio is self financing. In order for the portfolio to be risk-less and perform

as well as the money market account we require

αt dVt + βt dWt = r(αtVt + βtWt) dt.

Comparing the terms in front of the Wiener process yields α = − σW

σV β. Using this relation

and comparing the drift terms gives −σWµV + σV µW = r(−σWV + σVW ) or equivalently

µW − rW

σW
=
µV − rV

σV
,

and the Proposition 10.1 from [Björk, 1998] follows immediately.

1Girsanov’s theorem, see [Karatzas and Shreve, 1991, Section 3.5].
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µV
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Figure D.1: Risk and return. The slope is determined by the market price of risk ψ.

Proposition D.2.1

Assume that the market for derivatives is free of arbitrage. Then there exists a universal

stochastic process ψ such that, with probability 1, and for all t, we have

µV (St, t) − rVt
σV (St, t)

= ψt, (D.1)

regardless of the specific choice of the derivative V .

Assuming the price of the option is given by a function, solely depending on the current

price of the underlying St and time t, expressions for µV and σV and a pde can be derived.

With slight abuse of notation we write Vt = V (St, t) and hence

dV (St, t) =

(

∂V

∂t
+
∂V

∂s
µ+

1

2

∂2V

∂s2
σ2

)

dt+
∂V

∂s
σ dWt.

Inserting the expressions for µV and σV into (D.1) yields

∂V

∂t
+ (µ− ψσ)

∂V

∂s
+

1

2
σ2∂

2V

∂s2
− rV = 0, (D.2)

where the arguments s and t have been suppressed to allow for a compact notation.

Remark D.2.2 (Economic interpretation of the market price of risk)

The market price of risk has a deep economic meaning. To understand this, we need to

consider any derivative V as some asset. From equation (D.1) it follows that

µV

Vt
= r + ψt

σV

Vt
,

which means that at a specific time t, the expected instantaneous excess return over r of

any asset (which is a derivative on ST ) increases2 linearly with its instantaneous risk. The

higher the risk (or volatility) of an asset the higher the expected instantaneous excess return

which is illustrated in Figure D.1.

Remark D.2.3 (Market price of risk of the risk-neutral and pde approach)

The market price of risk function ψ in both sections coincide. This can be seen by applying

the Feynman-Kac formula to convert between expectations and pdes.

2Theoretically it could also decrease but that would not make sense from an economical point of view.
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D.3 Solution for a mean-reverting process

We assume the spot price process follows in the risk neutral probability measure Q the

mean reverting process

dXt = −αXt dt+ σ dWt,

St = exp(f(t) +Xt),
(D.3)

with constants α and σ. By Itô’s formula this it is equivalent to

dSt
St

= α(µ̂(t) − lnSt) dt+ σ dWt, µ̂(t) = f(t) +
1

α

df

dt
(t) +

σ2

2α
.

According to (B.4), the natural logarithm of St is normally distributed with mean m(T ) =

f(T ) + (Xt − f(t)) e−α(T−t) and variance v(t) = σ2

2α

(

1 − e−2α(T−t)). The expectation value

of ST (which is equal to the forward price) and the expected payoff of a call option for a

lognormally distributed random variable is known to be

E[ST |St] = exp

(

m(t) +
1

2
v(t)

)

,

E[(ST −K)+|St] = E[ST1ST≥K |St] −K E[1ST≥K |St]
= E[ST |St] N(d1) −K N(d2),

with the cumulative normal distribution N(x) and

d1 :=
− lnK +m(T ) + v(T )

√

v(T )
,

d2 :=
− lnK +m(T )

√

v(T )
.

Inserting the expressions for m(T ) and v(T ), and substituting f(t) by s(t) = ef(t) yields

the formulas for the forward price F and the call option value V

F = E[ST |St]

= s(T )

(

St
s(t)

)e−α(T−t)

exp

(

σ2

4α

(

1 − e−2α(T−t)
)

)

V = e−r(T−t) E[(ST −K)+|St]

= e−r(T−t)
(

s(T )

(

St
s(t)

)e−α(T−t)

exp

(

σ2

4α

(

1 − e−2α(T−t)
)

)

N(d1) −K N(d2)

)

with

d1 :=
ln
(

s(T )
K

)

+ ln
(

St
s(t)

)

e−α(T−t) +σ2

4α

(

1 − e−2α(T−t))

√

σ2

4α

(

1 − e−2α(T−t))
,

d2 :=
ln
(

s(T )
K

)

+ ln
(

St
s(t)

)

e−α(T−t)
√

σ2

4α

(

1 − e−2α(T−t))
.
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Figure D.2: Option prices of a call option for a mean-reverting process.

To give an intuitive understanding of the pricing formula, figure D.2 shows the prices of a

call option for the parameters α = 1, σ = 0.7 and r = 0. In the first graph, the initial spot

price S0 changes along the x-axis and the seasonality function is kept constant f(t) = 1.

It can be seen that for longer term options the initial value of the underlying is almost

unimportant, which makes sense as the mean-reverting term of the sde forces deviations

back to the mean after a certain time. In the second graph, the seasonal value s(T) changes

along the x-axis, whereas the initial value is kept equal to the seasonal value at time zero,

i.e. S0 = s(0). The deviation of the option price from the payoff profile for deep in the

money calls can be explained by the fact that the expectation of ST is not equal to s(T )

but s(T ) multiplied by a term depending on time to maturity.

We finally state the pde to be satisfied by the value function of the option V (S, t):

∂V

∂t
+

1

2
S2σ2∂

2V

∂S2
+ Sα(µ̂(t) − lnS)

∂V

∂S
− rV = 0.

D.3.1 Non-uniform grids

One approach to generate a non-uniform mesh in one dimension is through a generating

function. The idea is to specify a continuously differentiable strictly monotonic increasing

function g : [0, 1] → [0, 1] which maps a uniform grid in [0, 1] into a non-uniform grid in

[0, 1]. The resulting grid is then defined by {yi}ni=0 with

yi := g(xi), xi :=
i

n
, i = 0, . . . , n.

Figure D.3 illustrates this process. One important criteria of choosing a generating function

is the rate of which it concentrates grid points at certain positions. This can be expressed in

terms of the ration of the distance of two adjacent grid points of the non-uniform grid to the
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Figure D.3: Concentration of grid points around y∗ = 0.8 with 10 fold density c = 0.1

uniform grid. The distance in the non-uniform grid at the point y = g(x) is approximately

g′(x)∆x, where ∆x = 1
n is the distance in the uniform grid. So, it is natural to define a

distance ratio function r by

r(y) = g′
(

g−1(y)
)

.

As a simple example we consider the distance ratio function

r(y) :=
√

c2 + p2(y − y∗)2.

The parameter y∗ can be viewed as the centre of the grid point concentration with c as

a measure of the intensity because r assumes its minimum at y∗ with r(y∗) = c. For big

values y the function is almost linear since r(y) =
√

c2 + p2(y − y∗)2 ≈
√

p2y2 = |py|.
The parameter p has to be set appropriately so that the resulting grid generating function

satisfies g(1) = 1. By definition of r we have r(g(x)) = g′(x), g(0) = 0, which is an ode

for g and can be solved explicitly for the example function r we are considering here. The

solution is

g(x) = y∗ +
c

p
sinh

(

px+ arsinh
(

−p
c
y∗
))

. (D.4)

The parameter p has to be chosen so that g(1) = 1. That can for example be done using

the Newton iteration method. With parameters y∗ := 0.8 and c := 0.1 it follows that

p ≈ 8.42136 which Figure D.3 illustrates.
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